These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 12529304)

  • 1. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes.
    Pevzner P; Tesler G
    Genome Res; 2003 Jan; 13(1):37-45. PubMed ID: 12529304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages.
    Bourque G; Zdobnov EM; Bork P; Pevzner PA; Tesler G
    Genome Res; 2005 Jan; 15(1):98-110. PubMed ID: 15590940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes.
    Bourque G; Pevzner PA; Tesler G
    Genome Res; 2004 Apr; 14(4):507-16. PubMed ID: 15059991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements.
    Armengol L; Pujana MA; Cheung J; Scherer SW; Estivill X
    Hum Mol Genet; 2003 Sep; 12(17):2201-8. PubMed ID: 12915466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perfect sorting by reversals is not always difficult.
    Bérard S; Bergeron A; Chauve C; Paul C
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):4-16. PubMed ID: 17277409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational tools for the analysis of rearrangements in mammalian genomes.
    Tesler G; Bourque G
    Methods Mol Biol; 2008; 422():145-70. PubMed ID: 18629666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Murine segmental duplications are hot spots for chromosome and gene evolution.
    Armengol L; Marquès-Bonet T; Cheung J; Khaja R; González JR; Scherer SW; Navarro A; Estivill X
    Genomics; 2005 Dec; 86(6):692-700. PubMed ID: 16256303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale evolution: reconstructing gene orders in the ancestral species.
    Bourque G; Pevzner PA
    Genome Res; 2002 Jan; 12(1):26-36. PubMed ID: 11779828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome evolution of MMU16 and RNO11: conserved synteny associated with gene order rearrangements explicable by intrachromosomal recombinations and neocentromere emergence.
    Szpirer C; Rivière M; VanVooren P; Moisan MP; Haller O; Szpirer J
    Cytogenet Genome Res; 2005; 108(4):322-7. PubMed ID: 15627752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes.
    Alekseyev MA
    J Comput Biol; 2008 Oct; 15(8):1117-31. PubMed ID: 18788907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing the genomic architecture of mammalian ancestors using multispecies comparative maps.
    Murphy WJ; Bourque G; Tesler G; Pevzner P; O'Brien SJ
    Hum Genomics; 2003 Nov; 1(1):30-40. PubMed ID: 15601531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction and evolutionary history of eutherian chromosomes.
    Kim J; Farré M; Auvil L; Capitanu B; Larkin DM; Ma J; Lewin HA
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5379-E5388. PubMed ID: 28630326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution.
    Pevzner P; Tesler G
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7672-7. PubMed ID: 12810957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution.
    Kemkemer C; Kohn M; Cooper DN; Froenicke L; Högel J; Hameister H; Kehrer-Sawatzki H
    BMC Evol Biol; 2009 Apr; 9():84. PubMed ID: 19393055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hotspots of mammalian chromosomal evolution.
    Bailey JA; Baertsch R; Kent WJ; Haussler D; Eichler EE
    Genome Biol; 2004; 5(4):R23. PubMed ID: 15059256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rise and fall of breakpoint reuse depending on genome resolution.
    Attie O; Darling AE; Yancopoulos S
    BMC Bioinformatics; 2011 Oct; 12 Suppl 9(Suppl 9):S1. PubMed ID: 22151330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise detection of rearrangement breakpoints in mammalian chromosomes.
    Lemaitre C; Tannier E; Gautier C; Sagot MF
    BMC Bioinformatics; 2008 Jun; 9():286. PubMed ID: 18564416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity analysis for reversal distance and breakpoint reuse in genome rearrangements.
    Sinha AU; Meller J
    Pac Symp Biocomput; 2008; ():37-48. PubMed ID: 18229675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational tools for the analysis of rearrangements in mammalian genomes.
    Bourque G; Tesler G
    Methods Mol Biol; 2008; 452():431-55. PubMed ID: 18566776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colored de Bruijn graphs and the genome halving problem.
    Alekseyev MA; Pevzner PA
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):98-107. PubMed ID: 17277417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.