These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 12529310)

  • 1. Whole-genome sequence assembly for mammalian genomes: Arachne 2.
    Jaffe DB; Butler J; Gnerre S; Mauceli E; Lindblad-Toh K; Mesirov JP; Zody MC; Lander ES
    Genome Res; 2003 Jan; 13(1):91-6. PubMed ID: 12529310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARACHNE: a whole-genome shotgun assembler.
    Batzoglou S; Jaffe DB; Stanley K; Butler J; Gnerre S; Mauceli E; Berger B; Mesirov JP; Lander ES
    Genome Res; 2002 Jan; 12(1):177-89. PubMed ID: 11779843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PCAP: a whole-genome assembly program.
    Huang X; Wang J; Aluru S; Yang SP; Hillier L
    Genome Res; 2003 Sep; 13(9):2164-70. PubMed ID: 12952883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CAR: contig assembly of prokaryotic draft genomes using rearrangements.
    Lu CL; Chen KT; Huang SY; Chiu HT
    BMC Bioinformatics; 2014 Nov; 15(1):381. PubMed ID: 25431302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs.
    Swain MT; Tsai IJ; Assefa SA; Newbold C; Berriman M; Otto TD
    Nat Protoc; 2012 Jun; 7(7):1260-84. PubMed ID: 22678431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. U
    Castro CJ; Ng TFF
    J Comput Biol; 2017 Nov; 24(11):1071-1080. PubMed ID: 28418726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data.
    Jayakumar V; Ishii H; Seki M; Kumita W; Inoue T; Hase S; Sato K; Okano H; Sasaki E; Sakakibara Y
    BMC Genomics; 2020 Apr; 21(Suppl 3):243. PubMed ID: 32241258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSA: A high-throughput chromosome-scale assembly pipeline for vertebrate genomes.
    Kuhl H; Li L; Wuertz S; Stöck M; Liang XF; Klopp C
    Gigascience; 2020 May; 9(5):. PubMed ID: 32449778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes.
    Frenkel Z; Paux E; Mester D; Feuillet C; Korol A
    BMC Bioinformatics; 2010 Nov; 11():584. PubMed ID: 21118513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.
    Sato K; Kuroki Y; Kumita W; Fujiyama A; Toyoda A; Kawai J; Iriki A; Sasaki E; Okano H; Sakakibara Y
    Sci Rep; 2015 Nov; 5():16894. PubMed ID: 26586576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating characteristics of de novo assembly software on 454 transcriptome data: a simulation approach.
    Mundry M; Bornberg-Bauer E; Sammeth M; Feulner PG
    PLoS One; 2012; 7(2):e31410. PubMed ID: 22384018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid assembly of the large and highly repetitive genome of
    Zimin AV; Puiu D; Luo MC; Zhu T; Koren S; Marçais G; Yorke JA; Dvořák J; Salzberg SL
    Genome Res; 2017 May; 27(5):787-792. PubMed ID: 28130360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive review of scaffolding methods in genome assembly.
    Luo J; Wei Y; Lyu M; Wu Z; Liu X; Luo H; Yan C
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient hybrid de novo assembly of human genomes with WENGAN.
    Di Genova A; Buena-Atienza E; Ossowski S; Sagot MF
    Nat Biotechnol; 2021 Apr; 39(4):422-430. PubMed ID: 33318652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phusion assembler.
    Mullikin JC; Ning Z
    Genome Res; 2003 Jan; 13(1):81-90. PubMed ID: 12529309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo repeat classification and fragment assembly.
    Pevzner PA; Tang H; Tesler G
    Genome Res; 2004 Sep; 14(9):1786-96. PubMed ID: 15342561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.