BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 12529513)

  • 1. Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species.
    Choat B; Ball M; Luly J; Holtum J
    Plant Physiol; 2003 Jan; 131(1):41-8. PubMed ID: 12529513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.
    Choat B; Ball MC; Luly JG; Donnelly CF; Holtum JA
    Tree Physiol; 2006 May; 26(5):657-64. PubMed ID: 16452079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits.
    Choat B; Jansen S; Zwieniecki MA; Smets E; Holbrook NM
    J Exp Bot; 2004 Jul; 55(402):1569-75. PubMed ID: 15181107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species.
    Christman MA; Sperry JS; Smith DD
    New Phytol; 2012 Feb; 193(3):713-720. PubMed ID: 22150784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.
    Urli M; Porté AJ; Cochard H; Guengant Y; Burlett R; Delzon S
    Tree Physiol; 2013 Jul; 33(7):672-83. PubMed ID: 23658197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capacitive water release and internal leaf water relocation delay drought-induced cavitation in African Maesopsis eminii.
    Epila J; De Baerdemaeker NJF; Vergeynst LL; Maes WH; Beeckman H; Steppe K
    Tree Physiol; 2017 Apr; 37(4):481-490. PubMed ID: 28062725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting hydraulic architecture and function in deep and shallow roots of tree species from a semi-arid habitat.
    Johnson DM; Brodersen CR; Reed M; Domec JC; Jackson RB
    Ann Bot; 2014 Mar; 113(4):617-27. PubMed ID: 24363350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function.
    Choat B; Cobb AR; Jansen S
    New Phytol; 2008; 177(3):608-626. PubMed ID: 18086228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species.
    Nolf M; Creek D; Duursma R; Holtum J; Mayr S; Choat B
    Plant Cell Environ; 2015 Dec; 38(12):2652-61. PubMed ID: 26032606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function.
    Pittermann J; Choat B; Jansen S; Stuart SA; Lynn L; Dawson TE
    Plant Physiol; 2010 Aug; 153(4):1919-31. PubMed ID: 20551212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species.
    Liu YY; Song J; Wang M; Li N; Niu CY; Hao GY
    Tree Physiol; 2015 Dec; 35(12):1333-42. PubMed ID: 26209618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poplar vulnerability to xylem cavitation acclimates to drier soil conditions.
    Awad H; Barigah T; Badel E; Cochard H; Herbette S
    Physiol Plant; 2010 Jul; 139(3):280-8. PubMed ID: 20210873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water relations in tree physiology: where to from here?
    Landsberg J; Waring R; Ryan M
    Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drought-induced xylem pit membrane damage in aspen and balsam poplar.
    Hillabrand RM; Hacke UG; Lieffers VJ
    Plant Cell Environ; 2016 Oct; 39(10):2210-20. PubMed ID: 27342227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO₂ concentration.
    Domec JC; Schäfer K; Oren R; Kim HS; McCarthy HR
    Tree Physiol; 2010 Aug; 30(8):1001-15. PubMed ID: 20566583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of hydraulic architecture and water relations of two tropical canopy trees with contrasting leaf phenologies: Ochroma pyramidale and Pseudobombax septenatum.
    Machado JL; Tyree MT
    Tree Physiol; 1994 Mar; 14(3):219-40. PubMed ID: 14967698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How reliable are methods to assess xylem vulnerability to cavitation? The issue of 'open vessel' artifact in oaks.
    Martin-StPaul NK; Longepierre D; Huc R; Delzon S; Burlett R; Joffre R; Rambal S; Cochard H
    Tree Physiol; 2014 Aug; 34(8):894-905. PubMed ID: 25074860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium is a major determinant of xylem vulnerability to cavitation.
    Herbette S; Cochard H
    Plant Physiol; 2010 Aug; 153(4):1932-9. PubMed ID: 20547703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation: a blessing in disguise? New method to establish vulnerability curves and assess hydraulic capacitance of woody tissues.
    Vergeynst LL; Dierick M; Bogaerts JA; Cnudde V; Steppe K
    Tree Physiol; 2015 Apr; 35(4):400-9. PubMed ID: 25030935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.