These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 12529521)
1. trans-Resveratrol and grape disease resistance. A dynamical study by high-resolution laser-based techniques. Montero C; Cristescu SM; Jiménez JB; Orea JM; te Lintel Hekkert S; Harren FJ; González Ureña A Plant Physiol; 2003 Jan; 131(1):129-38. PubMed ID: 12529521 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955 [TBL] [Abstract][Full Text] [Related]
3. Resveratrol content of Palomino fino grapes: influence of vintage and fungal infection. Roldán A; Palacios V; Caro I; Pérez L J Agric Food Chem; 2003 Feb; 51(5):1464-8. PubMed ID: 12590499 [TBL] [Abstract][Full Text] [Related]
4. Improving postharvest resistance in fruits by external application of trans-resveratrol. Gonzalez Ureña A; Orea JM; Montero C; Jiménez JB; González JL; Sánchez A; Dorado M J Agric Food Chem; 2003 Jan; 51(1):82-9. PubMed ID: 12502389 [TBL] [Abstract][Full Text] [Related]
5. Analysis of trans-resveratrol by laser desorption coupled with resonant ionization spectrometry. Application to trans-resveratrol content in vine leaves and grape skin. Orea JM; Montero C; Jiménez JB; Ureña AG Anal Chem; 2001 Dec; 73(24):5921-9. PubMed ID: 11791561 [TBL] [Abstract][Full Text] [Related]
6. Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. Iriti M; Rossoni M; Borgo M; Faoro F J Agric Food Chem; 2004 Jul; 52(14):4406-13. PubMed ID: 15237944 [TBL] [Abstract][Full Text] [Related]
7. Postharvest physio-pathological disorders in table grapes as affected by UV-C light. D'Hallewin G; Ladu G; Pani G; Dore A; Molinu MG; Venditti T Commun Agric Appl Biol Sci; 2012; 77(4):515-25. PubMed ID: 23885419 [TBL] [Abstract][Full Text] [Related]
8. Comparison of ozone and UV-C treatments on the postharvest stilbenoid monomer, dimer, and trimer induction in var. 'Superior' white table grapes. González-Barrio R; Beltrán D; Cantos E; Gil MI; Espín JC; Tomás-Barberán FA J Agric Food Chem; 2006 Jun; 54(12):4222-8. PubMed ID: 16756350 [TBL] [Abstract][Full Text] [Related]
9. Ultraviolet-C and induced stilbenes control ochratoxigenic Aspergillus in grapes. Selma MV; Freitas PM; Almela L; González-Barrio R; Espín JC; Suslow T; Tomás-Barberán F; Gil MI J Agric Food Chem; 2008 Nov; 56(21):9990-6. PubMed ID: 18841974 [TBL] [Abstract][Full Text] [Related]
10. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941 [TBL] [Abstract][Full Text] [Related]
11. Effect of ochratoxin A-producing Aspergilli on stilbenic phytoalexin synthesis in grapes. Bavaresco L; Vezzulli S; Battilani P; Giorni P; Pietri A; Bertuzzi T J Agric Food Chem; 2003 Oct; 51(21):6151-7. PubMed ID: 14518937 [TBL] [Abstract][Full Text] [Related]
12. Dimerization of resveratrol by the grapevine pathogen Botrytis cinerea. Cichewicz RH; Kouzi SA; Hamann MT J Nat Prod; 2000 Jan; 63(1):29-33. PubMed ID: 10650073 [TBL] [Abstract][Full Text] [Related]
13. Determination and imaging of metabolites from Vitis vinifera leaves by laser desorption/ionisation time-of-flight mass spectrometry. Hamm G; Carré V; Poutaraud A; Maunit B; Frache G; Merdinoglu D; Muller JF Rapid Commun Mass Spectrom; 2010 Feb; 24(3):335-42. PubMed ID: 20049886 [TBL] [Abstract][Full Text] [Related]
14. Individual and combined effects of CaCl₂ and UV-C on the biosynthesis of resveratrols in grape leaves and berry skins. Wang L; Ma L; Xi H; Duan W; Wang J; Li S J Agric Food Chem; 2013 Jul; 61(29):7135-41. PubMed ID: 23855433 [TBL] [Abstract][Full Text] [Related]
15. Comparative protein profile analysis of wines made from Botrytis cinerea infected and healthy grapes reveals a novel biomarker for gushing in sparkling wine. Kupfer VM; Vogt EI; Ziegler T; Vogel RF; Niessen L Food Res Int; 2017 Sep; 99(Pt 1):501-509. PubMed ID: 28784511 [TBL] [Abstract][Full Text] [Related]
16. Impact of Bacillus cereus NRKT on grape ripe rot disease through resveratrol synthesis in berry skin. Aoki T; Aoki Y; Ishiai S; Otoguro M; Suzuki S Pest Manag Sci; 2017 Jan; 73(1):174-180. PubMed ID: 27038426 [TBL] [Abstract][Full Text] [Related]
17. Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant/pathogen interactions. Adrian M; Jeandet P Fitoterapia; 2012 Dec; 83(8):1345-50. PubMed ID: 22516542 [TBL] [Abstract][Full Text] [Related]
18. Post-harvest control of gray mold in table grapes using volatile sulfur compounds from Allium sativum. Gándara-Ledezma A; Corrales-Maldonado C; Rivera-Domínguez M; Martínez-Téllez MÁ; Vargas-Arispuro I J Sci Food Agric; 2015 Feb; 95(3):497-503. PubMed ID: 24862582 [TBL] [Abstract][Full Text] [Related]
19. Postharvest stilbene-enrichment of red and white table grape varieties using UV-C irradiation pulses. Cantos E; Espín JC; Tomás-Barberán FA J Agric Food Chem; 2002 Oct; 50(22):6322-9. PubMed ID: 12381111 [TBL] [Abstract][Full Text] [Related]
20. Study of amine composition of botrytized grape berries. Kiss J; Korbász M; Sass-Kiss A J Agric Food Chem; 2006 Nov; 54(23):8909-18. PubMed ID: 17090141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]