These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 12529528)
41. Three-dimensional model and characterization of the iron stress-induced CP43'-photosystem I supercomplex isolated from the cyanobacterium Synechocystis PCC 6803. Bibby TS; Nield J; Barber J J Biol Chem; 2001 Nov; 276(46):43246-52. PubMed ID: 11518716 [TBL] [Abstract][Full Text] [Related]
42. Isolation of lipids from photosystem I complex and its characterization with high performance liquid chromatography/electrospray ionization mass spectrometry. Yao H; Shi Y; Gao R; Zhang G; Zhang R; Zheng C; Xu B J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Jun; 837(1-2):101-7. PubMed ID: 16716773 [TBL] [Abstract][Full Text] [Related]
43. A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes. Bennett DI; Amarnath K; Fleming GR J Am Chem Soc; 2013 Jun; 135(24):9164-73. PubMed ID: 23679235 [TBL] [Abstract][Full Text] [Related]
44. Comparing and combining capillary electrophoresis electrospray ionization mass spectrometry and nano-liquid chromatography electrospray ionization mass spectrometry for the characterization of post-translationally modified histones. Sarg B; Faserl K; Kremser L; Halfinger B; Sebastiano R; Lindner HH Mol Cell Proteomics; 2013 Sep; 12(9):2640-56. PubMed ID: 23720761 [TBL] [Abstract][Full Text] [Related]
45. Composition of photosystem II antenna in light-harvesting complex II antisense tobacco plants at varying irradiances. Flachmann R Plant Physiol; 1997 Mar; 113(3):787-94. PubMed ID: 9085572 [TBL] [Abstract][Full Text] [Related]
46. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Kashino Y; Lauber WM; Carroll JA; Wang Q; Whitmarsh J; Satoh K; Pakrasi HB Biochemistry; 2002 Jun; 41(25):8004-12. PubMed ID: 12069591 [TBL] [Abstract][Full Text] [Related]
47. Spruce versus Arabidopsis: different strategies of photosynthetic acclimation to light intensity change. Štroch M; Karlický V; Ilík P; Ilíková I; Opatíková M; Nosek L; Pospíšil P; Svrčková M; Rác M; Roudnický P; Zdráhal Z; Špunda V; Kouřil R Photosynth Res; 2022 Oct; 154(1):21-40. PubMed ID: 35980499 [TBL] [Abstract][Full Text] [Related]
48. Phosphorylation of light-harvesting complex II and photosystem II core proteins shows different irradiance-dependent regulation in vivo. Application of phosphothreonine antibodies to analysis of thylakoid phosphoproteins. Rintamäki E; Salonen M; Suoranta UM; Carlberg I; Andersson B; Aro EM J Biol Chem; 1997 Nov; 272(48):30476-82. PubMed ID: 9374540 [TBL] [Abstract][Full Text] [Related]
49. The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. Kiss AZ; Ruban AV; Horton P J Biol Chem; 2008 Feb; 283(7):3972-8. PubMed ID: 18055452 [TBL] [Abstract][Full Text] [Related]
50. Evidence of the supercomplex organization of photosystem II and light-harvesting complexes in Nannochloropsis granulata. Umetani I; Kunugi M; Yokono M; Takabayashi A; Tanaka A Photosynth Res; 2018 Apr; 136(1):49-61. PubMed ID: 28856533 [TBL] [Abstract][Full Text] [Related]
51. The photosystem II subunit CP29 can be phosphorylated in both C3 and C4 plants as suggested by sequence analysis. Bergantino E; Sandonà D; Cugini D; Bassi R Plant Mol Biol; 1998 Jan; 36(1):11-22. PubMed ID: 9484458 [TBL] [Abstract][Full Text] [Related]
52. Changes in the composition of the photosynthetic apparatus in the galactolipid-deficient dgd1 mutant of Arabidopsis thaliana. Härtel H; Lokstein H; Dörmann P; Grimm B; Benning C Plant Physiol; 1997 Nov; 115(3):1175-84. PubMed ID: 9390443 [TBL] [Abstract][Full Text] [Related]
53. Multimeric and monomeric photosystem II supercomplexes represent structural adaptations to low- and high-light conditions. Kim E; Watanabe A; Duffy CDP; Ruban AV; Minagawa J J Biol Chem; 2020 Oct; 295(43):14537-14545. PubMed ID: 32561642 [TBL] [Abstract][Full Text] [Related]
54. Optimization and evolution of light harvesting in photosynthesis: the role of antenna chlorophyll conserved between photosystem II and photosystem I. Vasil'ev S; Bruce D Plant Cell; 2004 Nov; 16(11):3059-68. PubMed ID: 15486105 [TBL] [Abstract][Full Text] [Related]
55. Fluorescence quenching by chlorophyll cations in photosystem II. Schweitzer RH; Brudvig GW Biochemistry; 1997 Sep; 36(38):11351-9. PubMed ID: 9298954 [TBL] [Abstract][Full Text] [Related]
56. Structural analysis and comparison of light-harvesting complexes I and II. Pan X; Cao P; Su X; Liu Z; Li M Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148038. PubMed ID: 31229568 [TBL] [Abstract][Full Text] [Related]
57. Photochemical reactions of photosystem II in ethylene glycol. Hillier W; Lukins P; Seibert M; Wydrzynski T Biochemistry; 1997 Jan; 36(1):76-85. PubMed ID: 8993320 [TBL] [Abstract][Full Text] [Related]
58. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Niinemets U ; Kull O Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337 [TBL] [Abstract][Full Text] [Related]
59. Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana. Jia T; Ito H; Tanaka A Planta; 2016 Nov; 244(5):1041-1053. PubMed ID: 27394155 [TBL] [Abstract][Full Text] [Related]
60. The low molecular mass PsbW protein is involved in the stabilization of the dimeric photosystem II complex in Arabidopsis thaliana. Shi LX; Lorković ZJ; Oelmuller R; Schroder WP J Biol Chem; 2000 Dec; 275(48):37945-50. PubMed ID: 10950961 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]