BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 12529536)

  • 21. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction.
    Cheon J; Park SY; Schulz B; Choe S
    BMC Plant Biol; 2010 Dec; 10():270. PubMed ID: 21143877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steroid signaling in plants: from the cell surface to the nucleus.
    Friedrichsen D; Chory J
    Bioessays; 2001 Nov; 23(11):1028-36. PubMed ID: 11746219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis.
    Song LI; Zhou XY; Li LI; Xue LJ; Yang XI; Xue HW
    Mol Plant; 2009 Jul; 2(4):755-772. PubMed ID: 19825654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of a plant gene with sequence similarity to animal TGF-beta receptor interacting protein is regulated by brassinosteroids and required for normal plant development.
    Jiang J; Clouse SD
    Plant J; 2001 Apr; 26(1):35-45. PubMed ID: 11359608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis.
    Choe S; Fujioka S; Noguchi T; Takatsuto S; Yoshida S; Feldmann KA
    Plant J; 2001 Jun; 26(6):573-82. PubMed ID: 11489171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis.
    Caño-Delgado A; Yin Y; Yu C; Vafeados D; Mora-García S; Cheng JC; Nam KH; Li J; Chory J
    Development; 2004 Nov; 131(21):5341-51. PubMed ID: 15486337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana.
    Kim GT; Fujioka S; Kozuka T; Tax FE; Takatsuto S; Yoshida S; Tsukaya H
    Plant J; 2005 Mar; 41(5):710-21. PubMed ID: 15703058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels.
    Takahashi N; Nakazawa M; Shibata K; Yokota T; Ishikawa A; Suzuki K; Kawashima M; Ichikawa T; Shimada H; Matsui M
    Plant J; 2005 Apr; 42(1):13-22. PubMed ID: 15773850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plant brassinosteroid hormones.
    Asami T; Nakano T; Fujioka S
    Vitam Horm; 2005; 72():479-504. PubMed ID: 16492480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis.
    Goda H; Shimada Y; Asami T; Fujioka S; Yoshida S
    Plant Physiol; 2002 Nov; 130(3):1319-34. PubMed ID: 12427998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis and metabolism of brassinosteroids.
    Fujioka S; Yokota T
    Annu Rev Plant Biol; 2003; 54():137-64. PubMed ID: 14502988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis.
    Li J; Li Y; Chen S; An L
    J Exp Bot; 2010 Oct; 61(15):4221-30. PubMed ID: 20685730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant hormones: brassinosteroids in the spotlight.
    Clouse SD
    Curr Biol; 1996 Jun; 6(6):658-61. PubMed ID: 8793287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana.
    Yoshimitsu Y; Tanaka K; Fukuda W; Asami T; Yoshida S; Hayashi K; Kamiya Y; Jikumaru Y; Shigeta T; Nakamura Y; Matsuo T; Okamoto S
    PLoS One; 2011; 6(8):e23851. PubMed ID: 21909364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arabidopsis CYP72C1 is an atypical cytochrome P450 that inactivates brassinosteroids.
    Thornton LE; Rupasinghe SG; Peng H; Schuler MA; Neff MM
    Plant Mol Biol; 2010 Sep; 74(1-2):167-81. PubMed ID: 20669042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids.
    Poppenberger B; Fujioka S; Soeno K; George GL; Vaistij FE; Hiranuma S; Seto H; Takatsuto S; Adam G; Yoshida S; Bowles D
    Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15253-8. PubMed ID: 16214889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rice CYP734A cytochrome P450s inactivate brassinosteroids in Arabidopsis.
    Thornton LE; Peng H; Neff MM
    Planta; 2011 Dec; 234(6):1151-62. PubMed ID: 21735198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism.
    Ohnishi T; Nomura T; Watanabe B; Ohta D; Yokota T; Miyagawa H; Sakata K; Mizutani M
    Phytochemistry; 2006 Sep; 67(17):1895-906. PubMed ID: 16872648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional complementation of dwf4 mutants of Arabidopsis by overexpression of CYP724A1.
    Zhang R; Xia X; Lindsey K; da Rocha PS
    J Plant Physiol; 2012 Mar; 169(4):421-8. PubMed ID: 22196800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic evidence for the reduction of brassinosteroid levels by a BAHD acyltransferase-like protein in Arabidopsis.
    Roh H; Jeong CW; Fujioka S; Kim YK; Lee S; Ahn JH; Choi YD; Lee JS
    Plant Physiol; 2012 Jun; 159(2):696-709. PubMed ID: 22544867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.