BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 12529856)

  • 1. Protein phosphatase 2C is involved in the cAMP-dependent ciliary control in Paramecium caudatum.
    Noguchi M; Sasaki JY; Kamachi H; Inoue H
    Cell Motil Cytoskeleton; 2003 Feb; 54(2):95-104. PubMed ID: 12529856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of ciliary orientation through cAMP-dependent phosphorylation of axonemal proteins in paramecium caudatum.
    Noguchi M; Ogawa T; Taneyama T
    Cell Motil Cytoskeleton; 2000 Apr; 45(4):263-71. PubMed ID: 10744859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a 42 kDa protein as a substrate of protein phosphatase 1 in cilia from Paramecium.
    Klumpp S; Schultz JE
    FEBS Lett; 1991 Aug; 288(1-2):60-4. PubMed ID: 1652480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical studies of the excitable membrane of Paramecium tetraurelia VI. Endogenous protein substrates for in vitro and in vivo phosphorylation in cilia and ciliary membranes.
    Lewis RM; Nelson DL
    J Cell Biol; 1981 Oct; 91(1):167-74. PubMed ID: 6271790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmented ciliary reorientation response and cAMP-dependent protein phosphorylation induced by glycerol in triton-extracted Paramecium.
    Noguchi M; Kitani T; Ogawa T; Inoue H; Kamachi H
    Zoolog Sci; 2005 Jan; 22(1):41-8. PubMed ID: 15684582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein phosphatase and kinase activities possibly involved in exocytosis regulation in Paramecium tetraurelia.
    Kissmehl R; Treptau T; Hofer HW; Plattner H
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):65-76. PubMed ID: 8694788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization and localization of protein phosphatase type 2C from Paramecium.
    Grothe K; Hanke C; Momayezi M; Kissmehl R; Plattner H; Schultz JE
    J Biol Chem; 1998 Jul; 273(30):19167-72. PubMed ID: 9668103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of endogenous proteins of cilia from Paramecium tetraurelia in vitro.
    Eistetter H; Seckler B; Bryniok D; Schultz JE
    Eur J Cell Biol; 1983 Sep; 31(2):220-6. PubMed ID: 6315438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A membrane-bound protein phosphatase type 2C from Paramecium tetraurelia. Purification, characterization, and cloning.
    Klumpp S; Hanke C; Donella-Deana A; Beyer A; Kellner R; Pinna LA; Schultz JE
    J Biol Chem; 1994 Dec; 269(52):32774-80. PubMed ID: 7806499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cAMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium.
    Hamasaki T; Barkalow K; Richmond J; Satir P
    Proc Natl Acad Sci U S A; 1991 Sep; 88(18):7918-22. PubMed ID: 1654550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkaline phosphatase from Paramecium cilia and cell bodies: purification and characterization.
    Klumpp S; Schultz JE
    Biochim Biophys Acta; 1990 Feb; 1037(2):233-9. PubMed ID: 2155027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical studies of the excitable membrane of Paramecium. IV. Protein kinase activities of cilia and ciliary membrane.
    Lewis RM; Nelson DL
    Biochim Biophys Acta; 1980 Oct; 615(2):341-53. PubMed ID: 6251891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro phosphorylation of Paramecium axonemes and permeabilized cells.
    Hamasaki T; Murtaugh TJ; Satir BH; Satir P
    Cell Motil Cytoskeleton; 1989; 12(1):1-11. PubMed ID: 2539909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatographic separation of four Ser/Thr-protein phosphatases from solubilized ciliary membranes of Paramecium tetraurelia by heparin-sepharose.
    Klumpp S; Cohen P; Schultz JE
    J Chromatogr; 1990 Nov; 521(2):179-86. PubMed ID: 1962786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteins associated with cyclic nucleotide stimulation of ciliary motility in Paramecium.
    Bonini NM; Nelson DL
    J Cell Sci; 1990 Feb; 95 ( Pt 2)():219-30. PubMed ID: 2164518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of Ca2+-induced ciliary reversal by high-salt extraction in the cilia of Paramecium.
    Kutomi O; Seki M; Nakamura S; Kamachi H; Noguchi M
    Protoplasma; 2013 Oct; 250(5):1219-27. PubMed ID: 23636433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ciliary beat frequency is controlled by a dynein light chain phosphorylation.
    Satir P; Barkalow K; Hamasaki T
    Biophys J; 1995 Apr; 68(4 Suppl):222S. PubMed ID: 7787076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the ciliary beat by cyclic nucleotides in intact cortical sheets from Paramecium.
    Noguchi M; Kurahashi S; Kamachi H; Inoue H
    Zoolog Sci; 2004 Dec; 21(12):1167-75. PubMed ID: 15613797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein substrates for cGMP-dependent protein phosphorylation in cilia of wild type and atalanta mutants of Paramecium.
    Ann KS; Nelson DL
    Cell Motil Cytoskeleton; 1995; 30(4):252-60. PubMed ID: 7796456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic AMP-dependent protein kinases of Paramecium. I. Chromatographic and physical properties of the enzymes from cilia.
    Mason PA; Nelson DL
    Biochim Biophys Acta; 1989 Jan; 1010(1):108-15. PubMed ID: 2909245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.