BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12530525)

  • 1. Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the alpha-amylase family defined by the fifth conserved sequence region.
    Oslancová A; Janecek S
    Cell Mol Life Sci; 2002 Nov; 59(11):1945-59. PubMed ID: 12530525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases.
    Majzlová K; Pukajová Z; Janeček S
    Carbohydr Res; 2013 Feb; 367():48-57. PubMed ID: 23313816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain evolution in enzymes of the neopullulanase subfamily.
    Kuchtová A; Janeček Š
    Microbiology (Reading); 2016 Dec; 162(12):2099-2115. PubMed ID: 27902421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Looking for the ancestry of the heavy-chain subunits of heteromeric amino acid transporters rBAT and 4F2hc within the GH13 alpha-amylase family.
    Gabrisko M; Janecek S
    FEBS J; 2009 Dec; 276(24):7265-78. PubMed ID: 19878315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies.
    Cihan AC; Yildiz ED; Sahin E; Mutlu O
    World J Microbiol Biotechnol; 2018 Jun; 34(7):95. PubMed ID: 29904894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain evolution in the alpha-amylase family.
    Janecek S; Svensson B; Henrissat B
    J Mol Evol; 1997 Sep; 45(3):322-31. PubMed ID: 9302327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal α-amylases from three GH13 subfamilies: their sequence-structural features and evolutionary relationships.
    Janíčková Z; Janeček Š
    Int J Biol Macromol; 2020 Sep; 159():763-772. PubMed ID: 32416292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Close evolutionary relatedness among functionally distantly related members of the (alpha/beta)8-barrel glycosyl hydrolases suggested by the similarity of their fifth conserved sequence region.
    Janecek S
    FEBS Lett; 1995 Dec; 377(1):6-8. PubMed ID: 8543020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at alpha-(1----4)- and alpha-(1----6)-glucosidic linkages.
    Takata H; Kuriki T; Okada S; Takesada Y; Iizuka M; Minamiura N; Imanaka T
    J Biol Chem; 1992 Sep; 267(26):18447-52. PubMed ID: 1388153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases.
    Janeček Š; Svensson B; MacGregor EA
    Cell Mol Life Sci; 2014 Apr; 71(7):1149-70. PubMed ID: 23807207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Subfamily GH13_46 of the α-Amylase Family GH13 Represented by the Cyclomaltodextrinase from
    Mareček F; Janeček Š
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins.
    Stam MR; Danchin EG; Rancurel C; Coutinho PM; Henrissat B
    Protein Eng Des Sel; 2006 Dec; 19(12):555-62. PubMed ID: 17085431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability.
    Svensson B
    Plant Mol Biol; 1994 May; 25(2):141-57. PubMed ID: 8018865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution.
    Markovic O; Janecek S
    Protein Eng; 2001 Sep; 14(9):615-31. PubMed ID: 11707607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the α-amylase family GH57.
    Janeček S; Kuchtová A
    FEBS Lett; 2012 Sep; 586(19):3360-6. PubMed ID: 22819817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel beta/alpha-barrels of alpha-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of beta-amylase: evolutionary distance is a reflection of unrelated sequences.
    Janecek S
    FEBS Lett; 1994 Oct; 353(2):119-23. PubMed ID: 7926034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New groups of protein homologues in the α-amylase family GH57 closely related to α-glucan branching enzymes and 4-α-glucanotransferases.
    Janeček Š; Martinovičová M
    Genetica; 2020 Apr; 148(2):77-86. PubMed ID: 32096055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic analysis of family 6 glycoside hydrolases.
    Mertz B; Kuczenski RS; Larsen RT; Hill AD; Reilly PJ
    Biopolymers; 2005 Nov; 79(4):197-206. PubMed ID: 16086389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family.
    Park KH; Kim TJ; Cheong TK; Kim JW; Oh BH; Svensson B
    Biochim Biophys Acta; 2000 May; 1478(2):165-85. PubMed ID: 10825529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α-amylase family GH57.
    Blesák K; Janeček Š
    Microbiology (Reading); 2013 Dec; 159(Pt 12):2584-2593. PubMed ID: 24109595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.