BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 12531385)

  • 1. Functions of human DNA polymerases eta, kappa and iota suggested by their properties, including fidelity with undamaged DNA templates.
    Kunkel TA; Pavlov YI; Bebenek K
    DNA Repair (Amst); 2003 Feb; 2(2):135-49. PubMed ID: 12531385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity.
    Donigan KA; McLenigan MP; Yang W; Goodman MF; Woodgate R
    J Biol Chem; 2014 Mar; 289(13):9136-45. PubMed ID: 24532793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA polymerase iota and related rad30-like enzymes.
    McDonald JP; Tissier A; Frank EG; Iwai S; Hanaoka F; Woodgate R
    Philos Trans R Soc Lond B Biol Sci; 2001 Jan; 356(1405):53-60. PubMed ID: 11205331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymerization past the N2-isopropylguanine and the N6-isopropyladenine DNA lesions with the translesion synthesis DNA polymerases eta and iota and the replicative DNA polymerase alpha.
    Perrino FW; Harvey S; Blans P; Gelhaus S; Lacourse WR; Fishbein JC
    Chem Res Toxicol; 2005 Sep; 18(9):1451-61. PubMed ID: 16167838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translesion synthesis across abasic lesions by human B-family and Y-family DNA polymerases α, δ, η, ι, κ, and REV1.
    Choi JY; Lim S; Kim EJ; Jo A; Guengerich FP
    J Mol Biol; 2010 Nov; 404(1):34-44. PubMed ID: 20888339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translesion DNA polymerases Pol zeta, Pol eta, Pol iota, Pol kappa and Rev1 are not essential for repeat-induced point mutation in Neurospora crassa.
    Tamuli R; Ravindran C; Kasbekar DP
    J Biosci; 2006 Dec; 31(5):557-64. PubMed ID: 17301493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of DNA polymerases eta, iota and zeta in UV resistance and UV-induced mutagenesis in a human cell line.
    Gueranger Q; Stary A; Aoufouchi S; Faili A; Sarasin A; Reynaud CA; Weill JC
    DNA Repair (Amst); 2008 Sep; 7(9):1551-62. PubMed ID: 18586118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal hypermutation in antibody genes from congenic mice defective for DNA polymerase iota.
    Martomo SA; Yang WW; Vaisman A; Maas A; Yokoi M; Hoeijmakers JH; Hanaoka F; Woodgate R; Gearhart PJ
    DNA Repair (Amst); 2006 Mar; 5(3):392-8. PubMed ID: 16443401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low fidelity DNA synthesis by human DNA polymerase-eta.
    Matsuda T; Bebenek K; Masutani C; Hanaoka F; Kunkel TA
    Nature; 2000 Apr; 404(6781):1011-3. PubMed ID: 10801132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis.
    Kim J; Song I; Jo A; Shin JH; Cho H; Eoff RL; Guengerich FP; Choi JY
    Chem Res Toxicol; 2014 Oct; 27(10):1837-52. PubMed ID: 25162224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.
    Makarova AV; Kulbachinskiy AV
    Biochemistry (Mosc); 2012 Jun; 77(6):547-61. PubMed ID: 22817454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4.
    Kokoska RJ; McCulloch SD; Kunkel TA
    J Biol Chem; 2003 Dec; 278(50):50537-45. PubMed ID: 14523013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances of study on human translesion synthesis DNA polymerase eta].
    Hu GH; Zhuang ZX
    Wei Sheng Yan Jiu; 2006 Nov; 35(6):808-11. PubMed ID: 17290774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NGS-based analysis of base-substitution signatures created by yeast DNA polymerase eta and zeta on undamaged and abasic DNA templates in vitro.
    Chen Y; Sugiyama T
    DNA Repair (Amst); 2017 Nov; 59():34-43. PubMed ID: 28946034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic analysis of base-pairing preference for nucleotide incorporation opposite template pyrimidines by human DNA polymerase iota.
    Choi JY; Lim S; Eoff RL; Guengerich FP
    J Mol Biol; 2009 Jun; 389(2):264-74. PubMed ID: 19376129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerase iota - an odd sibling among Y family polymerases.
    McIntyre J
    DNA Repair (Amst); 2020 Feb; 86():102753. PubMed ID: 31805501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing and Bypass of a Site-Specific DNA Adduct of the Cytotoxic Platinum-Acridinylthiourea Conjugate by Polymerases Involved in DNA Repair: Biochemical and Thermodynamic Aspects.
    Hreusova M; Brabec V; Novakova O
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of TLS DNA polymerases eta and kappa in processing naturally occurring structured DNA in human cells.
    Bétous R; Rey L; Wang G; Pillaire MJ; Puget N; Selves J; Biard DS; Shin-ya K; Vasquez KM; Cazaux C; Hoffmann JS
    Mol Carcinog; 2009 Apr; 48(4):369-78. PubMed ID: 19117014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Interaction Between RAD23A/B and Y-family DNA Polymerases.
    Ashton NW; Jaiswal N; Moreno NC; Semenova IV; D'Orlando DA; Latancia MT; McIntyre J; Woodgate R; Bezsonova I
    J Mol Biol; 2023 Dec; 435(24):168353. PubMed ID: 37935254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota.
    Faili A; Aoufouchi S; Flatter E; Guéranger Q; Reynaud CA; Weill JC
    Nature; 2002 Oct; 419(6910):944-7. PubMed ID: 12410315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.