BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12531401)

  • 1. The effect of walking on regional blood flow and acetylcholine in the hippocampus in conscious rats.
    Nakajima K; Uchida S; Suzuki A; Hotta H; Aikawa Y
    Auton Neurosci; 2003 Jan; 103(1-2):83-92. PubMed ID: 12531401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of the septal complex increases local cerebral blood flow in the hippocampus in anesthetized rats.
    Cao WH; Inanami O; Sato A; Sato Y
    Neurosci Lett; 1989 Dec; 107(1-3):135-40. PubMed ID: 2575724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative effects of L-NOARG and L-NAME on basal blood flow and ACh-induced vasodilatation in rat diaphragmatic microcirculation.
    Chang HY; Chen CW; Hsiue TR
    Br J Pharmacol; 1997 Jan; 120(2):326-32. PubMed ID: 9117127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional cerebral blood flow in the frontal, parietal and occipital cortices increases independently of systemic arterial pressure during slow walking in conscious rats.
    Kimura A; Okada K; Sato A; Suzuki H
    Neurosci Res; 1994 Oct; 20(4):309-15. PubMed ID: 7870384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of acupuncture-like stimulation on cortical cerebral blood flow in anesthetized rats.
    Uchida S; Kagitani F; Suzuki A; Aikawa Y
    Jpn J Physiol; 2000 Oct; 50(5):495-507. PubMed ID: 11120916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide synthase inhibition and extracellular glutamate concentration after cerebral ischemia/reperfusion.
    Zhang J; Benveniste H; Klitzman B; Piantadosi CA
    Stroke; 1995 Feb; 26(2):298-304. PubMed ID: 7530389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of 7-nitroindazole and N-nitro-l-arginine methyl ester on changes in cerebral blood flow and nitric oxide production preceding development of hyperbaric oxygen-induced seizures in rats.
    Hagioka S; Takeda Y; Zhang S; Sato T; Morita K
    Neurosci Lett; 2005 Jul; 382(3):206-10. PubMed ID: 15908121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide modulates the cardiovascular effects elicited by acetylcholine in the NTS of awake rats.
    da Silva LG; Dias AC; Furlan E; Colombari E
    Am J Physiol Regul Integr Comp Physiol; 2008 Dec; 295(6):R1774-81. PubMed ID: 18815211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downregulation of muscarinic- and 5-HT1B-mediated modulation of [3H]acetylcholine release in hippocampal slices of rats with fimbria-fornix lesions and intrahippocampal grafts of septal origin.
    Cassel JC; Jeltsch H; Neufang B; Lauth D; Szabo B; Jackisch R
    Brain Res; 1995 Dec; 704(2):153-66. PubMed ID: 8788910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nitric oxide synthase inhibitor on optic nerve head circulation in conscious rabbits.
    Sugiyama T; Oku H; Ikari S; Ikeda T
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1149-52. PubMed ID: 10752953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of nitric oxide in the maintenance of resting cerebral blood flow during chronic hypertension.
    Yang ST
    Life Sci; 1996; 58(15):1231-8. PubMed ID: 8614276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permissive and obligatory roles of NO in cerebrovascular responses to hypercapnia and acetylcholine.
    Iadecola C; Zhang F
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R990-1001. PubMed ID: 8897992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor necrosis factor-alpha increases cerebral blood flow and ultrastructural capillary damage through the release of nitric oxide in the rat brain.
    Farkas E; Süle Z; Tóth-Szuki V; Mátyás A; Antal P; Farkas IG; Mihály A; Bari F
    Microvasc Res; 2006 Nov; 72(3):113-9. PubMed ID: 16854437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative contributions from neuronal and endothelial nitric oxide synthases to regional cerebral blood flow changes during forebrain ischemia in rats.
    Santizo R; Baughman VL; Pelligrino DA
    Neuroreport; 2000 May; 11(7):1549-53. PubMed ID: 10841375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of nitric oxide and acetylcholine in neocortical hyperemia elicited by basal forebrain stimulation: evidence for an involvement of endothelial nitric oxide.
    Zhang F; Xu S; Iadecola C
    Neuroscience; 1995 Dec; 69(4):1195-204. PubMed ID: 8848107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NO contributes to neurohypophysial but not other regional cerebral fluorocarbon-induced hyperemia in cats.
    Wagner BP; Stingele R; Williams MA; Wilson DA; Traystman RJ; Hanley DF
    Am J Physiol; 1997 Oct; 273(4):H1994-2000. PubMed ID: 9362271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide-dependent and -independent components of cerebrovasodilation elicited by hypercapnia.
    Iadecola C; Zhang F
    Am J Physiol; 1994 Feb; 266(2 Pt 2):R546-52. PubMed ID: 7511352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of adrenergic and nitrergic blockade on theophylline-induced increase in peripheral blood flow in rat ear.
    Sanae F; Hayashi H
    Jpn J Pharmacol; 1998 Nov; 78(3):345-54. PubMed ID: 9869269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation.
    Akgören N; Fabricius M; Lauritzen M
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5903-7. PubMed ID: 7517038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Somatosensory regulation of regional hippocampal blood flow in anesthetized rats.
    Cao WH; Sato A; Sato Y; Zhou W
    Jpn J Physiol; 1992; 42(5):731-40. PubMed ID: 1491499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.