These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 12531719)

  • 41. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NO(x) with ammonia.
    Li J; Zhu R; Cheng Y; Lambert CK; Yang RT
    Environ Sci Technol; 2010 Mar; 44(5):1799-805. PubMed ID: 20136123
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective autocatalytic reduction of NO from sintering flue gas by the hot sintered ore in the presence of NH3.
    Chen W; Luo J; Qin L; Han J
    J Environ Manage; 2015 Dec; 164():146-50. PubMed ID: 26363262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The balance of acidity and redox capability over modified CeO
    Lian Z; Shan W; Wang M; He H; Feng Q
    J Environ Sci (China); 2019 May; 79():273-279. PubMed ID: 30784451
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure of Mn-Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons.
    Gutiérrez-Ortiz JI; de Rivas B; López-Fonseca R; Martín S; González-Velasco JR
    Chemosphere; 2007 Jun; 68(6):1004-12. PubMed ID: 17395240
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of amorphous-MnO
    Liu C; Zhuo Y; Chen Y; Mao Y; Shen Q; Ma J; Ma R; Cheng L; Ji F; Xu X
    Environ Res; 2024 Jan; 241():117574. PubMed ID: 37931738
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactional effect of cerium and manganese on NO catalytic oxidation.
    Liang Y; Huang Y; Zhang H; Lan L; Zhao M; Gong M; Chen Y; Wang J
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9314-9324. PubMed ID: 28233199
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel strategy for efficient utilization of manganese tailings: High SO
    Wu H; Liu W; Zhang X; Liu Q
    Waste Manag; 2023 Jun; 164():66-73. PubMed ID: 37031514
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electro-thermal treatment of high concentration ammonia in water by gaseous oxidation in liquid phase (GOLP).
    Cao L; Yang J; Jia J
    Chemosphere; 2010 Jun; 80(4):463-8. PubMed ID: 20462628
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.
    Menezes PW; Indra A; Littlewood P; Schwarze M; Göbel C; Schomäcker R; Driess M
    ChemSusChem; 2014 Aug; 7(8):2202-11. PubMed ID: 25044528
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel.
    Yang S; Xiong S; Liao Y; Xiao X; Qi F; Peng Y; Fu Y; Shan W; Li J
    Environ Sci Technol; 2014 Sep; 48(17):10354-62. PubMed ID: 25105802
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low-temperature SCR of NO
    Yu C; Dong L; Chen F; Liu X; Huang B
    Environ Technol; 2017 Apr; 38(8):1030-1042. PubMed ID: 27494642
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of iron loading on the performance and structure of Fe/ZSM-5 catalyst for the selective catalytic reduction of NO with NH
    Wang XT; Hu HP; Zhang XY; Su XX; Yang XD
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1706-1715. PubMed ID: 30448951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oxidation of triclosan by permanganate (Mn(VII)): importance of ligands and in situ formed manganese oxides.
    Jiang J; Pang SY; Ma J
    Environ Sci Technol; 2009 Nov; 43(21):8326-31. PubMed ID: 19924964
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental study on a low-temperature SCR catalyst based on MnO(x)/TiO(2) prepared by sol-gel method.
    Wu Z; Jiang B; Liu Y; Zhao W; Guan B
    J Hazard Mater; 2007 Jul; 145(3):488-94. PubMed ID: 17188430
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidative destruction of o-DCB on supported manganese oxide catalyst.
    Saleh FS; Rahman MM
    J Hazard Mater; 2009 Mar; 162(2-3):1574-7. PubMed ID: 18603366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of internals for Selective Catalytic Reduction (SCR) for NO removal.
    Lei Z; Wen C; Chen B
    Environ Sci Technol; 2011 Apr; 45(8):3437-44. PubMed ID: 21381660
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.
    Zhang R; Huang T; Wen G; Chen Y; Cao X; Zhang B
    Int J Environ Res Public Health; 2017 Jul; 14(7):. PubMed ID: 28753939
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Propene poisoning on three typical Fe-zeolites for SCR of NOχ with NH₃: from mechanism study to coating modified architecture.
    Ma L; Li J; Cheng Y; Lambert CK; Fu L
    Environ Sci Technol; 2012 Feb; 46(3):1747-54. PubMed ID: 22239740
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalytic remediation of 2-propanol on Pt-Mn/γ-Al2O3 bimetallic catalyst during catalytic combustion--experimental study and response surface methodology (RSM) modeling.
    Salari D; Niaei A; Aghazadeh F; Hosseini SA; Seyednajafi F
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(3):351-7. PubMed ID: 22320686
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly selective catalytic reduction of NO via SO2/H2O-tolerant spinel catalysts at low temperature.
    Cai X; Sun W; Xu C; Cao L; Yang J
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18609-20. PubMed ID: 27301438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.