These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12531729)

  • 1. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system.
    Wang JJ; O'Brien AB; Shrive NG; Parker KH; Tyberg JV
    Am J Physiol Heart Circ Physiol; 2003 Apr; 284(4):H1358-68. PubMed ID: 12531729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave intensity analysis and the development of the reservoir-wave approach.
    Tyberg JV; Davies JE; Wang Z; Whitelaw WA; Flewitt JA; Shrive NG; Francis DP; Hughes AD; Parker KH; Wang JJ
    Med Biol Eng Comput; 2009 Feb; 47(2):221-32. PubMed ID: 19189147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The non-linearities of arterial blood flow.
    Bodley WE
    Phys Med Biol; 1971 Oct; 16(4):663-72. PubMed ID: 5153702
    [No Abstract]   [Full Text] [Related]  

  • 4. Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics.
    Mynard JP; Smolich JJ
    Am J Physiol Heart Circ Physiol; 2014 Aug; 307(3):H307-18. PubMed ID: 24878775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave intensity analysis of left ventricular filling: application of windkessel theory.
    Flewitt JA; Hobson TN; Wang J; Johnston CR; Shrive NG; Belenkie I; Parker KH; Tyberg JV
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2817-23. PubMed ID: 17277025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The case for the reservoir-wave approach.
    Tyberg JV; Bouwmeester JC; Parker KH; Shrive NG; Wang JJ
    Int J Cardiol; 2014 Mar; 172(2):299-306. PubMed ID: 24485224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic venous circulation. Waves propagating on a windkessel: relation of arterial and venous windkessels to systemic vascular resistance.
    Wang JJ; Flewitt JA; Shrive NG; Parker KH; Tyberg JV
    Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H154-62. PubMed ID: 16113064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of wave reflections in the arterial system using wave intensity: a novel method for predicting the timing and amplitude of reflected waves.
    Koh TW; Pepper JR; DeSouza AC; Parker KH
    Heart Vessels; 1998; 13(3):103-13. PubMed ID: 10328180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of total arterial compliance and peripheral resistance in the determination of systolic and diastolic aortic pressure.
    Stergiopulos N; Westerhof N
    Pathol Biol (Paris); 1999 Jun; 47(6):641-7. PubMed ID: 10472075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Windkessel as a model of aortic input impedance.
    Burkhoff D; Alexander J; Schipke J
    Am J Physiol; 1988 Oct; 255(4 Pt 2):H742-53. PubMed ID: 3177666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The arterial Windkessel.
    Westerhof N; Lankhaar JW; Westerhof BE
    Med Biol Eng Comput; 2009 Feb; 47(2):131-41. PubMed ID: 18543011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave speed and intensity in the canine aorta: analysis with and without the Windkessel-wave system.
    Borlotti A; Khir A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():219-22. PubMed ID: 22254289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reservoir and reservoir-less pressure effects on arterial waves in the canine aorta.
    Borlotti A; Park C; Parker KH; Khir AW
    J Hypertens; 2015 Mar; 33(3):564-74; discussion 574. PubMed ID: 25462708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise central (aortic) blood pressure is predominantly driven by forward traveling waves, not wave reflection.
    Schultz MG; Davies JE; Roberts-Thomson P; Black JA; Hughes AD; Sharman JE
    Hypertension; 2013 Jul; 62(1):175-82. PubMed ID: 23716581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autogenous cardiac assist with chronic descending thoracic aortomyoplasty.
    Lazzara RR; Trumble DR; Magovern JA
    Ann Thorac Surg; 1994 Jun; 57(6):1540-4. PubMed ID: 8010799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid Windkessel-Womersley model for blood flow in arteries.
    Aboelkassem Y; Virag Z
    J Theor Biol; 2019 Feb; 462():499-513. PubMed ID: 30528559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave propagation and reflection in the canine aorta: analysis using a reservoir-wave approach.
    Wang JJ; Shrive NG; Parker KH; Hughes AD; Tyberg JV
    Can J Cardiol; 2011; 27(3):389.e1-10. PubMed ID: 21601775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrograde lower body arterial reservoir discharge underlies rapid reversal of ductus arteriosus shunting after early cord clamping at birth in preterm lambs.
    Smolich JJ; Kenna KR; Mynard JP
    J Appl Physiol (1985); 2016 Feb; 120(4):399-407. PubMed ID: 26635349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.
    Lu PJ; Yang CF; Wu MY; Hung CH; Chan MY; Hsu TC
    J Thorac Cardiovasc Surg; 2011 Nov; 142(5):1205-13. PubMed ID: 21477820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelasticity modulates resonance in the terminal aortic circulation.
    Burattini R; Natalucci S; Campbell KB
    Med Eng Phys; 1999 Apr; 21(3):175-85. PubMed ID: 10468359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.