These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 12531810)
1. Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Zhou Y; Hileman EO; Plunkett W; Keating MJ; Huang P Blood; 2003 May; 101(10):4098-104. PubMed ID: 12531810 [TBL] [Abstract][Full Text] [Related]
2. Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Hileman EO; Liu J; Albitar M; Keating MJ; Huang P Cancer Chemother Pharmacol; 2004 Mar; 53(3):209-19. PubMed ID: 14610616 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. Pelicano H; Feng L; Zhou Y; Carew JS; Hileman EO; Plunkett W; Keating MJ; Huang P J Biol Chem; 2003 Sep; 278(39):37832-9. PubMed ID: 12853461 [TBL] [Abstract][Full Text] [Related]
4. Acquisition of resistance of pancreatic cancer cells to 2-methoxyestradiol is associated with the upregulation of manganese superoxide dismutase. Zhou J; Du Y Mol Cancer Res; 2012 Jun; 10(6):768-77. PubMed ID: 22547077 [TBL] [Abstract][Full Text] [Related]
5. Requirement of reactive oxygen species generation in apoptosis of leukemia cells induced by 2-methoxyestradiol. She MR; Li JG; Guo KY; Lin W; Du X; Niu XQ Acta Pharmacol Sin; 2007 Jul; 28(7):1037-44. PubMed ID: 17588341 [TBL] [Abstract][Full Text] [Related]
6. 2-Methoxyestradiol enhances reactive oxygen species formation and increases the efficacy of oxygen radical generating tumor treatment. Lambert C; Thews O; Biesalski HK; Vaupel P; Kelleher DK; Frank J Eur J Med Res; 2002 Sep; 7(9):404-14. PubMed ID: 12435619 [TBL] [Abstract][Full Text] [Related]
7. 2-Methoxyestradiol inhibits superoxide anion generation while it enhances superoxide dismutase activity in swine granulosa cells. Basini G; Santini SE; Grasselli F Ann N Y Acad Sci; 2006 Dec; 1091():34-40. PubMed ID: 17341600 [TBL] [Abstract][Full Text] [Related]
9. Effective elimination of chronic lymphocytic leukemia cells in the stromal microenvironment by a novel drug combination strategy using redox-mediated mechanisms. Zhang W; Pelicano H; Yin R; Zeng J; Wen T; Ding L; Huang R Mol Med Rep; 2015 Nov; 12(5):7374-88. PubMed ID: 26458979 [TBL] [Abstract][Full Text] [Related]
10. Effect of 2-methoxyestradiol, buthionine sulfoximine and hydrogen peroxide on the viability of renal carcinoma cell lines (ACHN and ACVB). Hirai Y; Kawabe N; Tsuda Y; Miyamoto S; Iwakawa S Biol Pharm Bull; 2006 May; 29(5):1064-7. PubMed ID: 16651749 [TBL] [Abstract][Full Text] [Related]
11. Possible protective effects of alpha-tocopherol on enhanced induction of reactive oxygen species by 2-methoxyestradiol in tumors. Thews O; Lambert C; Kelleher DK; Biesalski HK; Vaupel P; Frank J Adv Exp Med Biol; 2005; 566():349-55. PubMed ID: 16594172 [TBL] [Abstract][Full Text] [Related]
12. Functional characterization of NAD dependent de-acetylases SIRT1 and SIRT2 in B-Cell Chronic Lymphocytic Leukemia (CLL). Bhalla S; Gordon LI Cancer Biol Ther; 2016; 17(3):300-9. PubMed ID: 26794150 [TBL] [Abstract][Full Text] [Related]
13. Induction of B-chronic lymphocytic leukemia cell apoptosis by arsenic trioxide involves suppression of the phosphoinositide 3-kinase/Akt survival pathway via c-jun-NH2 terminal kinase activation and PTEN upregulation. Redondo-Muñoz J; Escobar-Díaz E; Hernández Del Cerro M; Pandiella A; Terol MJ; García-Marco JA; García-Pardo A Clin Cancer Res; 2010 Sep; 16(17):4382-91. PubMed ID: 20534739 [TBL] [Abstract][Full Text] [Related]
14. Targeting p53-deficient chronic lymphocytic leukemia cells in vitro and in vivo by ROS-mediated mechanism. Liu J; Chen G; Pelicano H; Liao J; Huang J; Feng L; Keating MJ; Huang P Oncotarget; 2016 Nov; 7(44):71378-71389. PubMed ID: 27655686 [TBL] [Abstract][Full Text] [Related]
15. Arsenic-trioxide-induced apoptosis of chronic lymphocytic leukemia cells. Bairey O; Vanichkin A; Shpilberg O Int J Lab Hematol; 2010 Feb; 32(1 Pt 1):e77-85. PubMed ID: 19208092 [TBL] [Abstract][Full Text] [Related]
16. Hu1D10 induces apoptosis concurrent with activation of the AKT survival pathway in human chronic lymphocytic leukemia cells. Mone AP; Huang P; Pelicano H; Cheney CM; Green JM; Tso JY; Johnson AJ; Jefferson S; Lin TS; Byrd JC Blood; 2004 Mar; 103(5):1846-54. PubMed ID: 14630799 [TBL] [Abstract][Full Text] [Related]
17. Organometallic nucleosides induce non-classical leukemic cell death that is mitochondrial-ROS dependent and facilitated by TCL1-oncogene burden. Prinz C; Vasyutina E; Lohmann G; Schrader A; Romanski S; Hirschhäuser C; Mayer P; Frias C; Herling CD; Hallek M; Schmalz HG; Prokop A; Mougiakakos D; Herling M Mol Cancer; 2015 Jun; 14():114. PubMed ID: 26041471 [TBL] [Abstract][Full Text] [Related]
18. 2-Methoxyestradiol-induced caspase-3 activation and apoptosis occurs through G(2)/M arrest dependent and independent pathways in gastric carcinoma cells. Lin HL; Liu TY; Wu CW; Chi CW Cancer; 2001 Aug; 92(3):500-9. PubMed ID: 11505393 [TBL] [Abstract][Full Text] [Related]
19. Biochemical activity of reactive oxygen species scavengers do not predict retinal ganglion cell survival. Schlieve CR; Lieven CJ; Levin LA Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3878-86. PubMed ID: 16936100 [TBL] [Abstract][Full Text] [Related]
20. Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Amigo-Jiménez I; Bailón E; Aguilera-Montilla N; García-Marco JA; García-Pardo A Oncotarget; 2016 Dec; 7(50):83359-83377. PubMed ID: 27829220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]