These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 12532020)

  • 21. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL; O'connor PM
    Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
    de Margerie E; Mouret JB; Doncieux S; Meyer JA
    Bioinspir Biomim; 2007 Dec; 2(4):65-82. PubMed ID: 18037730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running During Avian Ontogeny.
    Heers AM; Rankin JW; Hutchinson JR
    Front Bioeng Biotechnol; 2018; 6():140. PubMed ID: 30406089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of locomotion over inclined surfaces in laying hens.
    LeBlanc C; Tobalske B; Bowley S; Harlander-Matauschek A
    Animal; 2018 Mar; 12(3):585-596. PubMed ID: 28780926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents.
    Dececchi TA; Larsson HC; Habib MB
    PeerJ; 2016; 4():e2159. PubMed ID: 27441115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanics and physiology of gait selection in flying birds.
    Tobalske BW
    Physiol Biochem Zool; 2000; 73(6):736-50. PubMed ID: 11121347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forelimb skeletal morphology and flight mode evolution in pelecaniform birds.
    Simons EL
    Zoology (Jena); 2010 Jan; 113(1):39-46. PubMed ID: 20071157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of slotted wing tips on yawing moment characteristics.
    Sachs G; Moelyadi MA
    J Theor Biol; 2006 Mar; 239(1):93-100. PubMed ID: 16199060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bat flight generates complex aerodynamic tracks.
    Hedenström A; Johansson LC; Wolf M; von Busse R; Winter Y; Spedding GR
    Science; 2007 May; 316(5826):894-7. PubMed ID: 17495171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Precocial hindlimbs and altricial forelimbs: partitioning ontogenetic strategies in mallards (Anas platyrhynchos).
    Dial TR; Carrier DR
    J Exp Biol; 2012 Nov; 215(Pt 21):3703-10. PubMed ID: 22855613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition from leg to wing forces during take-off in birds.
    Provini P; Tobalske BW; Crandell KE; Abourachid A
    J Exp Biol; 2012 Dec; 215(Pt 23):4115-24. PubMed ID: 22972887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies.
    Heers AM; Dial KP
    Evolution; 2015 Feb; 69(2):305-20. PubMed ID: 25494705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Paleontology. Flying dinos and baby birds offer new clues about how avians took wing.
    Balter M
    Science; 2012 Nov; 338(6107):591-2. PubMed ID: 23118159
    [No Abstract]   [Full Text] [Related]  

  • 35. The primary feather lengths of early birds with respect to avian wing shape evolution.
    Wang X; Nudds RL; Dyke GJ
    J Evol Biol; 2011 Jun; 24(6):1226-31. PubMed ID: 21418115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats.
    Bell E; Andres B; Goswami A
    J Evol Biol; 2011 Dec; 24(12):2586-99. PubMed ID: 21955123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ontogeny of Flight Capacity and Pectoralis Function in a Precocial Ground Bird (Alectoris chukar).
    Tobalske BW; Jackson BE; Dial KP
    Integr Comp Biol; 2017 Aug; 57(2):217-230. PubMed ID: 28662566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanics of bird flight.
    Tobalske BW
    J Exp Biol; 2007 Sep; 210(Pt 18):3135-46. PubMed ID: 17766290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure, form, and function of flight in engineering and the living world.
    Lindhe Norberg UM
    J Morphol; 2002 Apr; 252(1):52-81. PubMed ID: 11921036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.