These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 12532307)

  • 1. On the cavitation energy of water.
    Höfinger S; Zerbetto F
    Chemistry; 2003 Jan; 9(2):566-9. PubMed ID: 12532307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavitation free energy for organic molecules having various sizes and shapes.
    Grigoriev FV; Basilevsky MV; Gabin SN; Romanov AN; Sulimov VB
    J Phys Chem B; 2007 Dec; 111(49):13748-55. PubMed ID: 18020442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantum chemical approach to the free energy calculations in condensed systems: the QM/MM method combined with the theory of energy representation.
    Takahashi H; Matubayasi N; Nakahara M; Nitta T
    J Chem Phys; 2004 Sep; 121(9):3989-99. PubMed ID: 15332945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico prediction of drug solubility: 2. Free energy of solvation in pure melts.
    Lüder K; Lindfors L; Westergren J; Nordholm S; Kjellander R
    J Phys Chem B; 2007 Feb; 111(7):1883-92. PubMed ID: 17266352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of drug solubility. 3. Free energy of solvation in pure amorphous matter.
    Lüder K; Lindfors L; Westergren J; Nordholm S; Kjellander R
    J Phys Chem B; 2007 Jun; 111(25):7303-11. PubMed ID: 17550285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building cavities in a fluid of spherical or rod-like particles: a contribution to the solvation free energy in isotropic and anisotropic polarizable continuum model.
    Benzi C; Cossi M; Improta R; Barone V
    J Comput Chem; 2005 Aug; 26(11):1096-105. PubMed ID: 15929089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chelate effect and thermodynamics of metal complex formation in solution: a quantum chemical study.
    Vallet V; Wahlgren U; Grenthe I
    J Am Chem Soc; 2003 Dec; 125(48):14941-50. PubMed ID: 14640672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I).
    Hancock RD; Bartolotti LJ
    Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computation of the contribution from the cavity effect to protein-ligand binding free energy.
    Grigoriev FV; Gabin SN; Romanov AN; Sulimov VB
    J Phys Chem B; 2008 Dec; 112(48):15355-60. PubMed ID: 18991438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculations of solute and solvent entropies from molecular dynamics simulations.
    Carlsson J; Aqvist J
    Phys Chem Chem Phys; 2006 Dec; 8(46):5385-95. PubMed ID: 17119645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computation of hydration free energies of organic solutes with an implicit water model.
    Basilevsky MV; Leontyev IV; Luschekina SV; Kondakova OA; Sulimov VB
    J Comput Chem; 2006 Apr; 27(5):552-70. PubMed ID: 16463371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the cavitation free energy.
    Floris FM
    J Phys Chem B; 2005 Dec; 109(50):24061-70. PubMed ID: 16375398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry optimization based on linear response free energy with quantum mechanical/molecular mechanical method: applications to Menshutkin-type and Claisen rearrangement reactions in aqueous solution.
    Higashi M; Hayashi S; Kato S
    J Chem Phys; 2007 Apr; 126(14):144503. PubMed ID: 17444719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-body symmetry-adapted perturbation theory based on Kohn-Sham description of the monomers.
    Podeszwa R; Szalewicz K
    J Chem Phys; 2007 May; 126(19):194101. PubMed ID: 17523792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity cluster approach for quantification of cavitational intensity in sonochemical reactors.
    Kanthale PM; Gogate PR; Pandit AB; Marie Wilhelm A
    Ultrason Sonochem; 2003 Jul; 10(4-5):181-9. PubMed ID: 12818380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities.
    Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q
    J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple models for hydrophobic hydration.
    Höfinger S; Zerbetto F
    Chem Soc Rev; 2005 Dec; 34(12):1012-20. PubMed ID: 16284667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set.
    Marsman M; Grüneis A; Paier J; Kresse G
    J Chem Phys; 2009 May; 130(18):184103. PubMed ID: 19449904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.