BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 12533008)

  • 21. NASA experiments with food for interplanetary travel.
    Food Technol; 1998 Jun; 52(6):13-4. PubMed ID: 11542675
    [No Abstract]   [Full Text] [Related]  

  • 22. Sustaining humans in space.
    Hubbard GS; Hargens AR
    Mech Eng; 1989 Sep; 111(9):40-4. PubMed ID: 11539815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water recovery in space.
    Tamponnet C; Savage CJ; Amblard P; Lasserre JC; Personne JC; Germain JC
    ESA Bull; 1999 Mar; 97(5):56-60. PubMed ID: 11725802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Mini ecosystem summary of three flight experiment (4) performance of digital video camcorder implemented for mini ecosystem on space station Mir].
    Yamashita M; Sasada M; Sugiiura K; Ishikawa Y; Kobayashi K; Mizutani H; Kawasaki Y; Koike J; Ijiri K; Poynter J; MacCallum T; Anderson G
    Biol Sci Space; 1998 Nov; 12(3):202-3. PubMed ID: 12512532
    [No Abstract]   [Full Text] [Related]  

  • 25. From fresh vegetables to the harvest of wheat plants grown in the "SVET" space greenhouse onboard the MIR orbital station.
    Ivanova T; Kostov P; Sapunova S; Dandolov I; Sytchev V; Podolski I; Levinskikh M; Meleshko G; Bingham G; Salisbury F
    J Gravit Physiol; 1997 Jul; 4(2):P71-2. PubMed ID: 11540703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a controlled ecological life support system: regenerative technologies are necessary for implementation in a lunar base CELSS.
    Schwartzkopf SH
    Bioscience; 1992; 42(7):526-35. PubMed ID: 11537405
    [No Abstract]   [Full Text] [Related]  

  • 27. Development and testing of an efficient LED intracanopy lighting design for minimizing Equivalent System Mass in an advanced life-support system.
    Massa GD; Emmerich JC; Mick ME; Kennedy RJ; Morrow RC; Mitchell CA
    Gravit Space Biol Bull; 2005 Jun; 18(2):87-8. PubMed ID: 16038098
    [No Abstract]   [Full Text] [Related]  

  • 28. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].
    Guo SS; Ai WD
    Space Med Med Eng (Beijing); 2001 Apr; 14(2):149-53. PubMed ID: 11808572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Selection of light source used for plant cultivation in controlled ecological life support system].
    Guo SS; Ai WD; Zhao CJ; Wang JX
    Space Med Med Eng (Beijing); 2003; 16 Suppl():490-3. PubMed ID: 14989303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a plant growth unit for growing plants over a long-term life cycle under microgravity conditions.
    Kitaya Y; Tani A; Goto E; Saito T; Takahashi H
    Adv Space Res; 2000; 26(2):281-8. PubMed ID: 11543163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance of a water suction system using hydrophilic fibrous cloth under low gravity and microgravity in parabolic flight.
    Tani A; Saito T; Kitaya Y; Takahashi H; Goto E
    Seibutsu Kankyo Chosetsu; 2000 Jun; 38(2):89-97. PubMed ID: 12269372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled ecological life-support system. Use of plants for human life-support in space.
    Chamberland D; Knott WM; Sager JC; Wheeler R
    J Fla Med Assoc; 1992 Aug; 79(8):537-44. PubMed ID: 1357076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Choice of a method and a type of device for water decontamination and warming within physical-chemical life support systems].
    Klimarev SI; Il'in VK; Starkova LV
    Aviakosm Ekolog Med; 2008; 42(4):3-14. PubMed ID: 19140466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A life support system for satellite experiments over one year.
    Lotz RG
    Life Sci Space Res; 1968; 6():49-55. PubMed ID: 12216555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering plants for spaceflight environments.
    Bugbee B
    Gravit Space Biol Bull; 1999 May; 12(2):67-74. PubMed ID: 11541785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology [correction of biotechnilogy].
    Bluem V; Paris F
    Acta Astronaut; 2001; 48(5-12):287-97. PubMed ID: 11858270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous Tube Plant Nutrient Delivery System development: a device for nutrient delivery in microgravity.
    Dreschel TW; Brown CS; Piastuch WC; Hinkle CR; Knott WM
    Adv Space Res; 1994 Nov; 14(11):47-51. PubMed ID: 11540217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Closed regenerative life support systems for space travel: their development poses fundamental questions for ecological science.
    Botkin DB; Golubic S; Maguire B; Moore B; Morowitz HJ; Slobodkin LB
    Life Sci Space Res; 1979; 17():3-12. PubMed ID: 12001968
    [No Abstract]   [Full Text] [Related]  

  • 39. The first "space" vegetables have been grown in the "SVET" greenhouse using controlled environmental conditions.
    Ivanova TN; Bercovich YuA ; Mashinskiy AL; Meleshko GI
    Acta Astronaut; 1993 Aug; 29(8):639-44. PubMed ID: 11541646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An aquatic ecosystem in space.
    Voeste D; Andriske M; Paris F; Levine HG; Blum V
    J Gravit Physiol; 1999 Jul; 6(1):P83-4. PubMed ID: 11543037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.