These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 12533009)

  • 1. [Development of plant growth chambers for the experiments under microgravity conditions--development of measurement system of plant water uptake].
    Saito T; Kobayashi Y; Shiga T; Arakawa Y; Takai M; Shimanuki M; Tani A; Goto E; Kitaya Y; Takahashi H
    Biol Sci Space; 1999 Sep; 13(3):226-7. PubMed ID: 12533009
    [No Abstract]   [Full Text] [Related]  

  • 2. [Development of plant growth chambers for the experiments under microgravity conditions (4)-results of two experiments for water circulation in parabolic flight].
    Tani A; Tahara N; Seino K; Kitaya Y; Saito T; Goto E; Takahashi H
    Biol Sci Space; 1999 Sep; 13(3):224-5. PubMed ID: 12533008
    [No Abstract]   [Full Text] [Related]  

  • 3. [Development of plant growth chambers for the experiments under microgravity conditions (7) -measurements of leaf temperature and net photosynthetic rates of leaves in a parabolic airplane flight experiment].
    Kitaya Y; Kawai M; Tsuruyama J; Takahashi H; Goto E; Tani A; Saito T; Kiyota M
    Biol Sci Space; 1999 Sep; 13(3):230-1. PubMed ID: 12533010
    [No Abstract]   [Full Text] [Related]  

  • 4. Achieving maximum plant yield in a weightless, bioregenerative system for a space craft.
    Salisbury FB
    Physiologist; 1984; 27(6 Suppl):S31-4. PubMed ID: 11539010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of water and nutrients using a porous tube: a method for growing plants in space.
    Dreschel TW; Sager JC
    HortScience; 1989 Dec; 24(6):944-7. PubMed ID: 11540906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Pre-flight ground studies for the Water Offset Nutrient Delivery Experiment (WONDER): a spaceflight payload comparing two nutrient delivery systems for plant growth in space].
    Kasahara H; Levine L; Tynes GK; Levine HG
    Biol Sci Space; 2001 Oct; 15(3):232-3. PubMed ID: 11997618
    [No Abstract]   [Full Text] [Related]  

  • 7. Life sciences: life support system studies-I. Proceedings of the F4.6, F4.8, F4.2 and F4.9 Symposia of COSPAR Scientific Commission F which were held during the Thirty-first COSPAR Scientific Assembly, Birmingham, U.K., 14-21 July 1996.
    Adv Space Res; 1997; 20(10):1799-2054. PubMed ID: 11542552
    [No Abstract]   [Full Text] [Related]  

  • 8. Wheat production in the controlled environments of space.
    Bugbee B; Salisbury FB
    Utah Sci; 1985; 46(4):145-51. PubMed ID: 11540895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The first "space" vegetables have been grown in the "SVET" greenhouse by means of controlled environmental conditions.
    Ivanova TN; Bercovich YuA ; Mashinskiy AL; Meleshko GI
    Microgravity Q; 1992 Apr; 2(2):109-14. PubMed ID: 11541047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges to plant growing in space.
    Langhans RW; Dreesen DR
    HortScience; 1988 Apr; 23(2):286-93. PubMed ID: 11537757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioregenerative [correction of bioregnerative] life support: not a picnic.
    Knott WM
    Gravit Space Biol Bull; 1998 May; 11(2):31-9. PubMed ID: 11540636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growing super-dwarf wheat in Svet on Mir.
    Salisbury FB; Bingham GE; Campbell WF; Carman JG; Bubenheim DL; Yendler B; Jahns G
    Life Support Biosph Sci; 1995; 2(1):31-9. PubMed ID: 11538572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Special issue: ecology in space.
    Biol Sci Space; 1998 Dec; 12(4):361-99. PubMed ID: 11542487
    [No Abstract]   [Full Text] [Related]  

  • 14. [Development of a ground-based experimental facility for space cultivation of higher plant].
    Guo SS; Wang PX; Hou JD; Ai WD; Chao ZG
    Space Med Med Eng (Beijing); 2000 Feb; 13(1):19-24. PubMed ID: 12214604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EPCOT, NASA and plant pathogens in space.
    White R
    Quest; 1996; 5(1):20-2. PubMed ID: 11540338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering plants for spaceflight environments.
    Bugbee B
    Gravit Space Biol Bull; 1999 May; 12(2):67-74. PubMed ID: 11541785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CELSS for advanced manned mission.
    Olson RL; Oleson MW; Slavin TJ
    HortScience; 1988 Apr; 23(2):275-86. PubMed ID: 11537756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a plant growth unit for growing plants over a long-term life cycle under microgravity conditions.
    Kitaya Y; Tani A; Goto E; Saito T; Takahashi H
    Adv Space Res; 2000; 26(2):281-8. PubMed ID: 11543163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a controlled ecological life support system: regenerative technologies are necessary for implementation in a lunar base CELSS.
    Schwartzkopf SH
    Bioscience; 1992; 42(7):526-35. PubMed ID: 11537405
    [No Abstract]   [Full Text] [Related]  

  • 20. The Minitron system for growth of small plants under controlled environment conditions.
    Akers CP; Akers SW; Mitchell CA
    J Am Soc Hortic Sci; 1985 May; 110(3):353-7. PubMed ID: 11540844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.