These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 12533015)

  • 21. Growth restoration in azuki bean and maize seedlings by removal of hypergravity stimuli.
    Soga K; Wakabayashi K; Kamisaka S; Hoson T
    Adv Space Res; 2003; 31(10):2269-74. PubMed ID: 14686442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. STS-95 space experiment for plant growth and development, and auxin polar transport.
    Ueda J; Miyamoto K; Yuda T; Hoshino T; Sato K; Fujii S; Kamigaichi S; Izumi R; Ishioka N; Aizawa S; Yoshizaki I; Shimazu T; Fukui K
    Biol Sci Space; 2000 Jun; 14(2):47-57. PubMed ID: 11543421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular basis for the automorphic curvature of rice coleoptiles on a three-dimensional clinostat: possible involvement of reorientation of cortical microtubules.
    Saiki M; Fujita H; Soga K; Wakabayashi K; Kamisaka S; Yamashita M; Hoson T
    J Plant Res; 2005 Jun; 118(3):199-205. PubMed ID: 15937724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles.
    Gibeaut DM; Pauly M; Bacic A; Fincher GB
    Planta; 2005 Jul; 221(5):729-38. PubMed ID: 15824908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nastic curvatures of wheat coleoptiles that develop in true microgravity.
    Heathcote DG; Chapman DK; Brown AH
    Plant Cell Environ; 1995 Jul; 18(7):818-22. PubMed ID: 11539343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis.
    Edwards JM; Roberts TH; Atwell BJ
    J Exp Bot; 2012 Jul; 63(12):4389-402. PubMed ID: 22585748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Possible mechanisms of plant cell wall changes at microgravity.
    Nedukha EM
    Adv Space Res; 1996; 17(6-7):37-45. PubMed ID: 11538635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of simulated and real weightlessness on early regeneration stages of Brassica napus protoplasts.
    Skagen EB; Iversen TH
    In Vitro Cell Dev Biol Plant; 2000; 36(5):312-8. PubMed ID: 11758568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence.
    Szymańska-Chargot M; Chylińska M; Pieczywek PM; Rösch P; Schmitt M; Popp J; Zdunek A
    Planta; 2016 Apr; 243(4):935-45. PubMed ID: 26733465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypergravity-induced increase in the apoplastic pH and its possible involvement in suppression of beta-glucan breakdown in maize seedlings.
    Soga K; Wakabayashi K; Hoson T; Kamisaka S
    Aust J Plant Physiol; 2000; 27(10):967-72. PubMed ID: 11806423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological evidence for the accumulation of restrained wall loosening potential on the growth-inhibited side of graviresponding rye coleoptiles.
    Edelmann HG; Samajova O
    Bot Acta; 1999 Jan; 1(1):57-60. PubMed ID: 11543184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential changes in cell wall matrix polysaccharides and glycoside-hydrolyzing enzymes in developing wheat seedlings differing in drought tolerance.
    Konno H; Yamasaki Y; Sugimoto M; Takeda K
    J Plant Physiol; 2008 May; 165(7):745-54. PubMed ID: 17765362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L.
    Kuang A; Xiao Y; McClure G; Musgrave ME
    Ann Bot; 2000 Jun; 85(6):851-9. PubMed ID: 11543312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of microgravity on the structure and function of plant cell walls.
    Nedukha EM
    Int Rev Cytol; 1997; 170():39-77. PubMed ID: 11536785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic and environmental factors contribute to variation in cell wall composition in mature desi chickpea (Cicer arietinum L.) cotyledons.
    Wood JA; Tan HT; Collins HM; Yap K; Khor SF; Lim WL; Xing X; Bulone V; Burton RA; Fincher GB; Tucker MR
    Plant Cell Environ; 2018 Sep; 41(9):2195-2208. PubMed ID: 29532951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A dive into the cell wall with Arabidopsis.
    Höfte H
    C R Biol; 2023 Feb; 345(4):41-60. PubMed ID: 36847119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenylalanine ammonia-lyase and cell wall peroxidase are cooperatively involved in the extensive formation of ferulate network in cell walls of developing rice shoots.
    Wakabayashi K; Soga K; Hoson T
    J Plant Physiol; 2012 Feb; 169(3):262-7. PubMed ID: 22118877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Role of light as a gravity-substituting factor in growth regulation of plants II--azuki bean epicotyls].
    Hoson T; Kaku T; Soga K; Wakabayashi K; Kamisaka S
    Biol Sci Space; 2000 Oct; 14(3):164-5. PubMed ID: 12561850
    [No Abstract]   [Full Text] [Related]  

  • 39. Mechanisms of growth and patterns of gene expression in oxygen-deprived rice coleoptiles.
    Narsai R; Edwards JM; Roberts TH; Whelan J; Joss GH; Atwell BJ
    Plant J; 2015 Apr; 82(1):25-40. PubMed ID: 25650041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of experimental hypogravity on peroxidase and cell wall constituents in the dwarf marigold.
    Siegel S; Speitel T; Shiraki D; Fukumoto J
    Life Sci Space Res; 1978; 16():105-9. PubMed ID: 11965654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.