These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 12533078)

  • 1. Variability and comparison of hyporheic water temperatures and seepage fluxes in a small Atlantic salmon stream.
    Alexander MD; Caissie D
    Ground Water; 2003; 41(1):72-82. PubMed ID: 12533078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delineating and quantifying ground water discharge zones using streambed temperatures.
    Conant B
    Ground Water; 2004; 42(2):243-57. PubMed ID: 15035588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Seepage Meter Measurements in Steady Flow and Wave Conditions.
    Russoniello CJ; Michael HA
    Ground Water; 2015; 53(6):959-66. PubMed ID: 25406673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of water, heat, and solute flux through streambeds around small dams.
    Fanelli RM; Lautz LK
    Ground Water; 2008; 46(5):671-87. PubMed ID: 18522652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stream flow, salmon and beaver dams: roles in the structuring of stream fish communities within an anadromous salmon dominated stream.
    Mitchell SC; Cunjak RA
    J Anim Ecol; 2007 Nov; 76(6):1062-74. PubMed ID: 17922703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using heat to characterize streambed water flux variability in four stream reaches.
    Essaid HI; Zamora CM; McCarthy KA; Vogel JR; Wilson JT
    J Environ Qual; 2008; 37(3):1010-23. PubMed ID: 18453424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydraulic modelling of the spatial and temporal variability in Atlantic salmon parr habitat availability in an upland stream.
    Fabris L; Malcolm IA; Buddendorf WB; Millidine KJ; Tetzlaff D; Soulsby C
    Sci Total Environ; 2017 Dec; 601-602():1046-1059. PubMed ID: 28599361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature models for quantifying groundwater seepage flux applied in a deep lake of a plateau: Yangzonghai Lake, Yunnan, China.
    Yang B; Yang S; Wan X; Hu H; Hu D; Hua M; Liu Y; Pan X
    Chemosphere; 2020 Jan; 238():124674. PubMed ID: 31524614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of oscillating flow on hyporheic zone development.
    Maier HS; Howard KW
    Ground Water; 2011; 49(6):830-44. PubMed ID: 21309768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying stream-aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories.
    Loheide SP; Gorelick SM
    Environ Sci Technol; 2006 May; 40(10):3336-41. PubMed ID: 16749702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds.
    Landon MK; Rus DL; Harvey FE
    Ground Water; 2001; 39(6):870-85. PubMed ID: 11708453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow.
    Jonsson B; Jonsson N
    J Fish Biol; 2009 Dec; 75(10):2381-447. PubMed ID: 20738500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing streambed hydraulic conductivity and their implications on stream-aquifer interaction: a conceptual review.
    Naganna SR; Deka PC; Ch S; Hansen WF
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):24765-24789. PubMed ID: 28988330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change.
    Elliott JM; Elliott JA
    J Fish Biol; 2010 Nov; 77(8):1793-817. PubMed ID: 21078091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral and longitudinal variation of hyporheic exchange in a piedmont stream pool.
    Ryan RJ; Boufadel MC
    Environ Sci Technol; 2007 Jun; 41(12):4221-6. PubMed ID: 17626416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of discharge and local density on the growth of juvenile Atlantic salmon Salmo salar.
    Teichert MA; Kvingedal E; Forseth T; Ugedal O; Finstad AG
    J Fish Biol; 2010 May; 76(7):1751-69. PubMed ID: 20557629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of an ultrasonic ground water seepage meter.
    Paulsen RJ; Smith CF; O'Rourke D; Wong TF
    Ground Water; 2001; 39(6):904-11. PubMed ID: 11708456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Darcian streambed measurements to quantify flux and mass discharge of volatile organic compounds from a contaminated aquifer to an urban stream.
    Nickels JL; Genereux DP; Knappe DRU
    J Contam Hydrol; 2023 Feb; 253():104124. PubMed ID: 36603303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using MODFLOW 2000 to model ET and recharge for shallow ground water problems.
    Doble RC; Simmons CT; Walker GR
    Ground Water; 2009; 47(1):129-35. PubMed ID: 18624693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.