These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12533139)

  • 1. Radiofrequency cartilage reshaping: efficacy, biophysical measurements, and tissue viability.
    Keefe MW; Rasouli A; Telenkov SA; Karamzadeh AM; Milner TE; Crumley RL; Wong BJ
    Arch Facial Plast Surg; 2003; 5(1):46-52. PubMed ID: 12533139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-mediated cartilage reshaping with feedback-controlled cryogen spray cooling: biophysical properties and viability.
    Karamzadeh AM; Rasouli A; Tanenbaum BS; Milner TE; Nelson JS; Wong BJ
    Lasers Surg Med; 2001; 28(1):1-10. PubMed ID: 11430436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependent change in equilibrium elastic modulus after thermally induced stress relaxation in porcine septal cartilage.
    Protsenko DE; Zemek A; Wong BJ
    Lasers Surg Med; 2008 Mar; 40(3):202-10. PubMed ID: 18366085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback-controlled laser-mediated cartilage reshaping.
    Wong BJ; Milner TE; Harrington A; Ro J; Dao X; Sobol EN; Nelson JS
    Arch Facial Plast Surg; 1999; 1(4):282-7. PubMed ID: 10937116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of porcine cartilage after uniform RF heating.
    Zemek AJ; Protsenko DE; Wong BJ
    Lasers Surg Med; 2012 Sep; 44(7):572-9. PubMed ID: 22886463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromechanical reshaping of costal cartilage grafts: a new surgical treatment modality.
    Manuel CT; Foulad A; Protsenko DE; Hamamoto A; Wong BJ
    Laryngoscope; 2011 Sep; 121(9):1839-42. PubMed ID: 22024834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of a straighter septum: numerical model of mechanical stress relaxation in laser-heated septal cartilage.
    Protsenko DE; Wong BJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5399-402. PubMed ID: 18003229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape retention in porcine-septal cartilage following Nd:YAG (lambda = 1.32 microm) laser-mediated reshaping.
    Gray DS; Kimball JA; Wong BJ
    Lasers Surg Med; 2001; 29(2):160-4. PubMed ID: 11553905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of temperature dependent mechanical behavior of cartilage.
    Chae Y; Aguilar G; Lavernia EJ; Wong BJ
    Lasers Surg Med; 2003; 32(4):271-8. PubMed ID: 12696094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative assessment of chondrocyte viability after laser mediated reshaping: a novel application of flow cytometry.
    Rasouli A; Sun CH; Basu R; Wong BJ
    Lasers Surg Med; 2003; 32(1):3-9. PubMed ID: 12516064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar and monopolar radiofrequency devices.
    Edwards RB; Lu Y; Rodriguez E; Markel MD
    Arthroscopy; 2002 Apr; 18(4):339-46. PubMed ID: 11951190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress Relaxation of Porcine Septal Cartilage During Nd:YAG (λ=1.32 μm) Laser Irradiation: Mechanical, Optical, and Thermal Responses.
    Wong BJ; Milner TE; Kim HH; Stuart Nelson J; Sobol EN
    J Biomed Opt; 1998 Oct; 3(4):409-14. PubMed ID: 23015140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the elastic modulus of porcine septal cartilage specimens following Nd: YAG laser treatment.
    Gaon MD; Ho KH; Wong BJ
    Lasers Med Sci; 2003; 18(3):148-53. PubMed ID: 14505198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Needle electrode-based electromechanical reshaping of cartilage.
    Manuel CT; Foulad A; Protsenko DE; Sepehr A; Wong BJ
    Ann Biomed Eng; 2010 Nov; 38(11):3389-97. PubMed ID: 20614240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteoglycan synthesis in porcine nasal cartilage grafts following Nd:YAG (lambda = 1.32 microns) laser-mediated reshaping.
    Wong BJ; Milner TE; Kim HK; Chao K; Sun CH; Sobol EN; Nelson JS
    Photochem Photobiol; 2000 Feb; 71(2):218-24. PubMed ID: 10687397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape retention in porcine and rabbit nasal septal cartilage using saline bath immersion and Nd:YAG laser irradiation.
    Wright R; Protsenko DE; Diaz S; Ho K; Wong B
    Lasers Surg Med; 2005 Sep; 37(3):201-9. PubMed ID: 16127702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromechanical reshaping of ex vivo porcine trachea.
    Hussain S; Manuel CT; Protsenko DE; Wong BJ
    Laryngoscope; 2015 Jul; 125(7):1628-32. PubMed ID: 25692713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical and thermal properties of nasal septal cartilage.
    Youn JI; Telenkov SA; Kim E; Bhavaraju NC; Wong BJ; Valvano JW; Milner TE
    Lasers Surg Med; 2000; 27(2):119-28. PubMed ID: 10960818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biophysics of radiofrequency catheter ablation in the heart: the importance of temperature monitoring.
    Haines DE
    Pacing Clin Electrophysiol; 1993 Mar; 16(3 Pt 2):586-91. PubMed ID: 7681962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical and electrical aspects of radiofrequency catheter ablation.
    Van Haesendonck C; Sinnaeve A; Willems R; Vandenbulcke F; Stroobandt R
    Acta Cardiol; 1995; 50(2):105-15. PubMed ID: 7610733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.