These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12533243)

  • 1. Quantitative modal determination of geological samples based on X-ray multielemental map acquisition.
    Cossio R; Borghi A; Ruffini R
    Microsc Microanal; 2002 Apr; 8(2):139-49. PubMed ID: 12533243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The determination of certain major and minor elements in geological samples by inductively coupled plasma atomic emission spectrometry. Some interference problems with the analysis of geological standard reference materials and nutrition supplements.
    Väisänen A; Matilainen R; Tummavuori J
    Fresenius J Anal Chem; 2000 Aug; 367(8):755-60. PubMed ID: 11220612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray digital imaging petrography of lunar mare soils: modal analyses of minerals and glasses.
    Taylor LA; Patchen A; Taylor DH; Chambers JG; McKay DS
    Icarus; 1996 Dec; 124(2):500-12. PubMed ID: 11539387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative x-ray microanalysis of model biological samples in the SEM using remote standards and the XPP analytical model.
    Marshall AT
    J Microsc; 2017 Jun; 266(3):231-238. PubMed ID: 28181671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personal-computer-based system for electron beam X-ray microanalysis of biological samples.
    Foster MC; Saubermann AJ
    J Microsc; 1991 Feb; 161(Pt 2):367-73. PubMed ID: 2038039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time quantitative elemental analysis and mapping: microchemical imaging in cell physiology.
    LeFurgey A; Davilla SD; Kopf DA; Sommer JR; Ingram P
    J Microsc; 1992 Feb; 165(Pt 2):191-223. PubMed ID: 1564720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical explanation of the relationship between backscattered electron and x-ray linear attenuation coefficients in calcified tissues.
    Wong FS; Elliott JC
    Scanning; 1997 Nov; 19(8):541-6. PubMed ID: 9418207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Textural and Mineralogical Analysis of Volcanic Rocks by µ-XRF Mapping.
    Germinario L; Cossio R; Maritan L; Borghi A; Mazzoli C
    Microsc Microanal; 2016 Jun; 22(3):690-7. PubMed ID: 27160144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing Supervision of Quantitative Image Analysis of Meteorite Samples.
    Crapster-Pregont EJ; Ebel DS
    Microsc Microanal; 2020 Feb; 26(1):63-75. PubMed ID: 31858928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of two micro-analytical methods for detecting the spatial distribution of sorbed Pu on geologic materials.
    Duff MC; Hunter DB; Triay IR; Bertsch PM; Kitten J; Vaniman DT
    J Contam Hydrol; 2001 Feb; 47(2-4):211-8. PubMed ID: 11288577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of X-ray micro-CT applications upon mafic and ultramafic ophiolitic rocks.
    Giamas V; Koutsovitis P; Sideridis A; Turberg P; Grammatikopoulos TA; Petrounias P; Giannakopoulou PP; Koukouzas N; Hatzipanagiotou K
    Micron; 2022 Jul; 158():103292. PubMed ID: 35512524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchrotron X-ray Microdiffraction and Fluorescence Imaging of Mineral and Rock Samples.
    Stan CV; Tamura N
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29985343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data handling in quantitative microanalysis in biology.
    Starý V
    Scanning Microsc Suppl; 1994; 8():203-15; discussion 215-7. PubMed ID: 7638488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Septate-tubular textures in 2.0-Ga pillow lavas from the Pechenga Greenstone Belt: a nano-spectroscopic approach to investigate their biogenicity.
    Fliegel D; Wirth R; Simonetti A; Furnes H; Staudigel H; Hanski E; Muehlenbachs K
    Geobiology; 2010 Dec; 8(5):372-90. PubMed ID: 20698893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass determination of thin biological specimens for use in quantitative electron probe X-ray microanalysis.
    Linders PW; Stols AL; van de Vorstenbosch RA; Stadhouders AM
    Scan Electron Microsc; 1982; (Pt 4):1603-15. PubMed ID: 7184142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating X-Ray Microanalysis Phase Maps Using Principal Component Analysis.
    Buse B; Kearns S
    Microsc Microanal; 2018 Apr; 24(2):116-125. PubMed ID: 29560843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of quantitative procedures for X-ray microanalysis of environmental particles.
    Choël M; Deboudt K; Flament P
    Microsc Res Tech; 2007 Nov; 70(11):996-1002. PubMed ID: 17661395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning electron microanalysis and analytical challenges of mapping elements in urban atmospheric particles.
    Conny JM; Norris GA
    Environ Sci Technol; 2011 Sep; 45(17):7380-6. PubMed ID: 21774494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of the measurement of enamel demineralization and remineralization using transverse microradiography and electron probe microanalysis.
    Cochrane NJ; Iijima Y; Shen P; Yuan Y; Walker GD; Reynolds C; MacRae CM; Wilson NC; Adams GG; Reynolds EC
    Microsc Microanal; 2014 Jun; 20(3):937-45. PubMed ID: 24758749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative X-ray imaging of labelled molecules in tissues and cells.
    Kirk RG; Gates ME; Chang CS; Lee P
    J Microsc; 1996 Aug; 183(Pt 2):181-6. PubMed ID: 8805829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.