These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 12533621)

  • 1. Muscarinic blockade slows and degrades the location-specific firing of hippocampal pyramidal cells.
    Brazhnik ES; Muller RU; Fox SE
    J Neurosci; 2003 Jan; 23(2):611-21. PubMed ID: 12533621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects on place cells of local scopolamine dialysis are mimicked by a mixture of two specific muscarinic antagonists.
    Brazhnik E; Borgnis R; Muller RU; Fox SE
    J Neurosci; 2004 Oct; 24(42):9313-23. PubMed ID: 15496667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hippocampal pyramidal cell-interneuron spike transmission is frequency dependent and responsible for place modulation of interneuron discharge.
    Marshall L; Henze DA; Hirase H; Leinekugel X; Dragoi G; Buzsáki G
    J Neurosci; 2002 Jan; 22(2):RC197. PubMed ID: 11784809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of atropine on hippocampal theta cells and complex-spike cells.
    Stewart M; Luo Y; Fox SE
    Brain Res; 1992 Sep; 591(1):122-8. PubMed ID: 1446223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin-dependent maintenance of spatial performance and electroencephalography activation after cholinergic blockade: effects of serotonergic receptor antagonists.
    Dringenberg HC; Zalan RM
    Brain Res; 1999 Aug; 837(1-2):242-53. PubMed ID: 10434009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hebb-Williams performance and scopolamine challenge in rats with partial immunotoxic hippocampal cholinergic deafferentation.
    Marques Pereira P; Cosquer B; Schimchowitsch S; Cassel JC
    Brain Res Bull; 2005 Jan; 64(5):381-94. PubMed ID: 15607826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ventral hippocampal galanin on spatial learning and on in vivo acetylcholine release in the rat.
    Ogren SO; Kehr J; Schött PA
    Neuroscience; 1996 Dec; 75(4):1127-40. PubMed ID: 8938746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discharge properties of hippocampal neurons during performance of a jump avoidance task.
    Lenck-Santini PP; Fenton AA; Muller RU
    J Neurosci; 2008 Jul; 28(27):6773-86. PubMed ID: 18596153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus.
    Maurer AP; Vanrhoads SR; Sutherland GR; Lipa P; McNaughton BL
    Hippocampus; 2005; 15(7):841-52. PubMed ID: 16145692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinergic induction of theta-frequency oscillations in hippocampal inhibitory interneurons and pacing of pyramidal cell firing.
    Chapman CA; Lacaille JC
    J Neurosci; 1999 Oct; 19(19):8637-45. PubMed ID: 10493764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action potentials and relations to the theta rhythm of medial septal neurons in vivo.
    Brazhnik ES; Fox SE
    Exp Brain Res; 1999 Aug; 127(3):244-58. PubMed ID: 10452212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A temporal mechanism for generating the phase precession of hippocampal place cells.
    Bose A; Booth V; Recce M
    J Comput Neurosci; 2000; 9(1):5-30. PubMed ID: 10946990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration.
    Csicsvari J; O'Neill J; Allen K; Senior T
    Eur J Neurosci; 2007 Aug; 26(3):704-16. PubMed ID: 17651429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial selectivity and theta phase precession in CA1 interneurons.
    Ego-Stengel V; Wilson MA
    Hippocampus; 2007; 17(2):161-74. PubMed ID: 17183531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medial septal galanin and acetylcholine: influence on hippocampal acetylcholine and spatial learning.
    Elvander E; Ogren SO
    Neuropeptides; 2005 Jun; 39(3):245-8. PubMed ID: 15944017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional modulation of scopolamine-induced working memory impairments by muscarinic activation of the medial septal area.
    Givens B; Olton DS
    Neurobiol Learn Mem; 1995 May; 63(3):269-76. PubMed ID: 7670840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells.
    Maurer AP; Cowen SL; Burke SN; Barnes CA; McNaughton BL
    J Neurosci; 2006 Dec; 26(52):13485-92. PubMed ID: 17192431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraseptal muscarinic ligands and galanin: influence on hippocampal acetylcholine and cognition.
    Elvander E; Schött PA; Sandin J; Bjelke B; Kehr J; Yoshitake T; Ogren SO
    Neuroscience; 2004; 126(3):541-57. PubMed ID: 15183504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAB receptor blockade enhances theta and gamma rhythms in the hippocampus of behaving rats.
    Leung LS; Shen B
    Hippocampus; 2007; 17(4):281-91. PubMed ID: 17301959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Firing rate and theta-phase coding by hippocampal pyramidal neurons during 'space clamping'.
    Hirase H; Czurkó A; Csicsvari J; Buzsáki G
    Eur J Neurosci; 1999 Dec; 11(12):4373-80. PubMed ID: 10594664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.