These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 12533762)

  • 1. Comparative study of Saccharomyces cerevisiae LPS.
    Gordonova IK; Nikitina ZK; Bykov VA
    Bull Exp Biol Med; 2002 Oct; 134(4):370-3. PubMed ID: 12533762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction and denaturing gel electrophoretic methodology for the analysis of yeast proteins.
    O'Callaghan KJ; Byrne LJ; Tuite MF
    Methods Mol Biol; 2005; 308():357-73. PubMed ID: 16082048
    [No Abstract]   [Full Text] [Related]  

  • 3. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and properties of recombinant exopolyphosphatase PPN1 and effects of its overexpression on polyphosphate in Saccharomyces cerevisiae.
    Andreeva N; Trilisenko L; Kulakovskaya T; Dumina M; Eldarov M
    J Biosci Bioeng; 2015 Jan; 119(1):52-6. PubMed ID: 25034634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of Saccharomyces cerevisiae Homologous Recombination Proteins Dmc1 and Rdh54/Tid1 and a Fluorescent D-Loop Assay.
    Chan YL; Bishop DK
    Methods Enzymol; 2018; 600():307-320. PubMed ID: 29458764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning, overexpression and purification of functionally active Saccharomyces cerevisiae Hop1 protein from Escherichia coli.
    Khan K; Madhavan TP; Muniyappa K
    Protein Expr Purif; 2010 Jul; 72(1):42-7. PubMed ID: 20347988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Procedure for Purification of Recombinant preMsk1p from E. coli Determines Its Properties as a Factor of tRNA Import into Yeast Mitochondria.
    Smirnova EV; Chicherin IV; Baleva MV; Entelis NS; Tarassov IA; Kamenski PA
    Biochemistry (Mosc); 2016 Oct; 81(10):1081-1088. PubMed ID: 27908233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast mitochondrial DNA polymerase is a highly processive single-subunit enzyme.
    Viikov K; Väljamäe P; Sedman J
    Mitochondrion; 2011 Jan; 11(1):119-26. PubMed ID: 20807588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae.
    Outten CE; Culotta VC
    EMBO J; 2003 May; 22(9):2015-24. PubMed ID: 12727869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli.
    Léger A; Hocquellet A; Dieryck W; Moine V; Marchal A; Marullo P; Josseaume A; Cabanne C
    J Agric Food Chem; 2017 Sep; 65(37):8154-8161. PubMed ID: 28871789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.
    Eldarov MA; Kishkovskaia SA; Tanaschuk TN; Mardanov AV
    Biochemistry (Mosc); 2016 Dec; 81(13):1650-1668. PubMed ID: 28260488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstituted Proteoliposome Fusion Mediated by Yeast SNARE-Family Proteins.
    Mima J
    Methods Mol Biol; 2019; 1860():303-322. PubMed ID: 30317514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of the TLR4-associated protein MD-2 using yeast-display and mutational analyses.
    Mattis DM; Chervin AS; Ranoa DR; Kelley SL; Tapping RI; Kranz DM
    Mol Immunol; 2015 Dec; 68(2 Pt A):203-12. PubMed ID: 26320630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae.
    Ulrich HD; Davies AA
    Methods Mol Biol; 2009; 497():81-103. PubMed ID: 19107412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification of the targets for genetic manipulation to improve L-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection.
    Hirasawa T; Takekuni M; Yoshikawa K; Ookubo A; Furusawa C; Shimizu H
    J Biotechnol; 2013 Oct; 168(2):185-93. PubMed ID: 23665193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale production of recombinant Saw1 in Escherichia coli.
    Rashev M; Surtees JA; Guarné A
    Protein Expr Purif; 2017 May; 133():75-80. PubMed ID: 28263853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae.
    Newstead S; Kim H; von Heijne G; Iwata S; Drew D
    Proc Natl Acad Sci U S A; 2007 Aug; 104(35):13936-41. PubMed ID: 17709746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the interaction site of Rpb4 and Rpb7 subunits of RNA polymerase II in Saccharomyces cerevisiae.
    Sareen A; Choudhry P; Mehta S; Sharma N
    Biochem Biophys Res Commun; 2005 Jul; 332(3):763-70. PubMed ID: 15913559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptome analysis between original and evolved recombinant lactose-consuming Saccharomyces cerevisiae strains.
    Guimarães PM; Le Berre V; Sokol S; François J; Teixeira JA; Domingues L
    Biotechnol J; 2008 Dec; 3(12):1591-7. PubMed ID: 19039778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyphosphates and exopolyphosphatase activities in the yeast Saccharomyces cerevisiae under overexpression of homologous and heterologous PPN1 genes.
    Eldarov MA; Baranov MV; Dumina MV; Shgun AA; Andreeva NA; Trilisenko LV; Kulakovskaya TV; Ryasanova LP; Kulaev IS
    Biochemistry (Mosc); 2013 Aug; 78(8):946-53. PubMed ID: 24228884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.