BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12533930)

  • 1. [Treatment of drilling wastewater from oil field by using yeast].
    Wang Y; Yang M; Zheng S; Zhou X; Shen Z
    Huan Jing Ke Xue; 2002 Sep; 23(5):72-5. PubMed ID: 12533930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Adsorbing capability of chromium-galvanized waste water by yeast-activated sludge].
    Yin H; Ye JS; Peng H; Zhang N; Xie DP
    Huan Jing Ke Xue; 2004 May; 25(3):61-4. PubMed ID: 15327255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biodegraded characteristics of MGP-wastewater by domestic and screened organisms].
    Ren Y; Shen Y; Wei C; Sheng G; Fu J
    Huan Jing Ke Xue; 2002 Sep; 23(5):76-9. PubMed ID: 12533931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Treatment of oil-manufacturing wastewater by yeast-SBR system].
    Lü WZ; Liu Y; Huang YZ
    Huan Jing Ke Xue; 2008 Apr; 29(4):966-71. PubMed ID: 18637347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on sludge expansion during treatment of salad oil manufacturing wastewater by yeast.
    Zheng S; Yang M; Lv W; Liu F
    Environ Technol; 2001 May; 22(5):533-42. PubMed ID: 11424730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seed yeast cultivation for salad oil manufacturing wastewater treatment.
    Zheng SK; Yang M; Li PR
    J Environ Sci (China); 2002 Jan; 14(1):39-43. PubMed ID: 11887316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of consortia of microorganisms for efficient removal of hexavalent chromium from industrial wastewater.
    Muneer B; Rehman A; Shakoori FR; Shakoori AR
    Bull Environ Contam Toxicol; 2009 May; 82(5):597-600. PubMed ID: 19183818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant.
    Cordova-Rosa SM; Dams RI; Cordova-Rosa EV; Radetski MR; Corrêa AX; Radetski CM
    J Hazard Mater; 2009 May; 164(1):61-6. PubMed ID: 18774223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of formaldehyde and its derivatives in industrial wastewater with methylotrophic yeast Hansenula polymorpha and with the yeast-bioaugmented activated sludge.
    Kaszycki P; Koloczek H
    Biodegradation; 2002; 13(2):91-9. PubMed ID: 12449312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of physico-chemical treatment on the subsequent biological process treating paper industry wastewater.
    el Khames Saad M; Moussaoui Y; Zaghbani A; Mosrati I; Elaloui E; Ben Salem R
    Water Sci Technol; 2012; 66(1):217-23. PubMed ID: 22678221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated carbon fiber filler in aerated bioreactor for industrial wastewater treatment.
    Zhou D; Hai R; Wang W; Zhao D; Wang S
    Water Sci Technol; 2012; 65(10):1753-8. PubMed ID: 22546788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of cell surface characteristics on population dynamics in a sequencing batch yeast reactor treating vegetable oil-containing wastewater.
    Lv W; Hesham Ael-L; Zhang Y; Liu X; Yang M
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1785-93. PubMed ID: 21468715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation.
    Badawy MI; El Gohary F; Ghaly MY; Ali ME
    J Hazard Mater; 2009 Sep; 169(1-3):673-9. PubMed ID: 19457611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of pulp and paper mill wastewater--a review.
    Pokhrel D; Viraraghavan T
    Sci Total Environ; 2004 Oct; 333(1-3):37-58. PubMed ID: 15364518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-electrolysis technology for industrial wastewater treatment.
    Jin YZ; Zhang YF; Li W
    J Environ Sci (China); 2003 May; 15(3):334-8. PubMed ID: 12938982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Bulking controls induced by nitrogen insufficiency in yeast system].
    Han Y; Yang Q; Yang M; Zhang Y; Zheng S
    Huan Jing Ke Xue; 2003 Jul; 24(4):68-72. PubMed ID: 14551959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of sulphate reducing bacteria according to COD/SO4(2-) ratio of acrylonitrile wastewater containing high sulphate.
    Byun IG; Lee TH; Kim YO; Song SK; Park TJ
    Water Sci Technol; 2004; 49(5-6):229-35. PubMed ID: 15137428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of a static magnetic field of 7 mT on formaldehyde biodegradation in industrial wastewater from urea-formaldehyde resin production by activated sludge.
    Łebkowska M; Narożniak-Rutkowska A; Pajor E
    Bioresour Technol; 2013 Mar; 132():78-83. PubMed ID: 23395758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Efficiency and characteristic of biological activated carbon fluidized bed for oil-field wastewater treatment].
    Li AJ; Liu H; Wang WY; Quan XC; Zhang D; Li ZL
    Huan Jing Ke Xue; 2006 May; 27(5):918-23. PubMed ID: 16850833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organics removal and protein recovery from wastewater discharged during the production of chondroitin sulfate.
    Sheng Y; Xing L
    Water Sci Technol; 2013; 68(7):1582-90. PubMed ID: 24135108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.