These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 12534293)
1. Escherichia coli MutY and Fpg utilize a processive mechanism for target location. Francis AW; David SS Biochemistry; 2003 Jan; 42(3):801-10. PubMed ID: 12534293 [TBL] [Abstract][Full Text] [Related]
2. The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity for 8-oxoguanine.adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase. Noll DM; Gogos A; Granek JA; Clarke ND Biochemistry; 1999 May; 38(20):6374-9. PubMed ID: 10350454 [TBL] [Abstract][Full Text] [Related]
3. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates. Porello SL; Leyes AE; David SS Biochemistry; 1998 Oct; 37(42):14756-64. PubMed ID: 9778350 [TBL] [Abstract][Full Text] [Related]
4. Specific recognition of A/G and A/7,8-dihydro-8-oxoguanine (8-oxoG) mismatches by Escherichia coli MutY: removal of the C-terminal domain preferentially affects A/8-oxoG recognition. Gogos A; Cillo J; Clarke ND; Lu AL Biochemistry; 1996 Dec; 35(51):16665-71. PubMed ID: 8988002 [TBL] [Abstract][Full Text] [Related]
5. MutY DNA glycosylase: base release and intermediate complex formation. Zharkov DO; Grollman AP Biochemistry; 1998 Sep; 37(36):12384-94. PubMed ID: 9730810 [TBL] [Abstract][Full Text] [Related]
6. Correlated cleavage of damaged DNA by bacterial and human 8-oxoguanine-DNA glycosylases. Sidorenko VS; Zharkov DO Biochemistry; 2008 Aug; 47(34):8970-6. PubMed ID: 18672903 [TBL] [Abstract][Full Text] [Related]
7. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. Bjorâs M; Luna L; Johnsen B; Hoff E; Haug T; Rognes T; Seeberg E EMBO J; 1997 Oct; 16(20):6314-22. PubMed ID: 9321410 [TBL] [Abstract][Full Text] [Related]
8. Probing the requirements for recognition and catalysis in Fpg and MutY with nonpolar adenine isosteres. Francis AW; Helquist SA; Kool ET; David SS J Am Chem Soc; 2003 Dec; 125(52):16235-42. PubMed ID: 14692765 [TBL] [Abstract][Full Text] [Related]
9. Oxidized guanine lesions as modulators of gene transcription. Altered p50 binding affinity and repair shielding by 7,8-dihydro-8-oxo-2'-deoxyguanosine lesions in the NF-kappaB promoter element. Hailer-Morrison MK; Kotler JM; Martin BD; Sugden KD Biochemistry; 2003 Aug; 42(32):9761-70. PubMed ID: 12911319 [TBL] [Abstract][Full Text] [Related]
10. A substrate recognition role for the [4Fe-4S]2+ cluster of the DNA repair glycosylase MutY. Porello SL; Cannon MJ; David SS Biochemistry; 1998 May; 37(18):6465-75. PubMed ID: 9572864 [TBL] [Abstract][Full Text] [Related]
11. Efficient recognition of substrates and substrate analogs by the adenine glycosylase MutY requires the C-terminal domain. Chmiel NH; Golinelli MP; Francis AW; David SS Nucleic Acids Res; 2001 Jan; 29(2):553-64. PubMed ID: 11139626 [TBL] [Abstract][Full Text] [Related]
12. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG. Leipold MD; Muller JG; Burrows CJ; David SS Biochemistry; 2000 Dec; 39(48):14984-92. PubMed ID: 11101315 [TBL] [Abstract][Full Text] [Related]
13. Escherichia coli apurinic-apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates. Pope MA; Porello SL; David SS J Biol Chem; 2002 Jun; 277(25):22605-15. PubMed ID: 11960995 [TBL] [Abstract][Full Text] [Related]
14. Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY. Golinelli MP; Chmiel NH; David SS Biochemistry; 1999 Jun; 38(22):6997-7007. PubMed ID: 10353811 [TBL] [Abstract][Full Text] [Related]
15. Positively charged residues within the iron-sulfur cluster loop of E. coli MutY participate in damage recognition and removal. Chepanoske CL; Golinelli MP; Williams SD; David SS Arch Biochem Biophys; 2000 Aug; 380(1):11-9. PubMed ID: 10900127 [TBL] [Abstract][Full Text] [Related]
16. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Guan Y; Manuel RC; Arvai AS; Parikh SS; Mol CD; Miller JH; Lloyd S; Tainer JA Nat Struct Biol; 1998 Dec; 5(12):1058-64. PubMed ID: 9846876 [TBL] [Abstract][Full Text] [Related]
18. Characterization of an Escherichia coli mutant MutY with a cysteine to alanine mutation at the iron-sulfur cluster domain. Lu AL; Wright PM Biochemistry; 2003 Apr; 42(13):3742-50. PubMed ID: 12667065 [TBL] [Abstract][Full Text] [Related]
19. Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface. Buchko GW; McAteer K; Wallace SS; Kennedy MA DNA Repair (Amst); 2005 Mar; 4(3):327-39. PubMed ID: 15661656 [TBL] [Abstract][Full Text] [Related]
20. Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1, and yOGG2. Leipold MD; Workman H; Muller JG; Burrows CJ; David SS Biochemistry; 2003 Sep; 42(38):11373-81. PubMed ID: 14503888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]