These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12534712)

  • 1. Computational flow visualization in vibrating flow pump type artificial heart by unstructured grid.
    Kato T; Kawano S; Nakahashi K; Yambe T; Nitta S; Hashimoto H
    Artif Organs; 2003 Jan; 27(1):41-8. PubMed ID: 12534712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational fluid dynamics analysis of an intra-cardiac axial flow pump.
    Mitoh A; Yano T; Sekine K; Mitamura Y; Okamoto E; Kim DW; Yozu R; Kawada S
    Artif Organs; 2003 Jan; 27(1):34-40. PubMed ID: 12534711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of vibrating flow pump for left ventricular assist circulation.
    Kobayashi S; Nitta S; Yambe T; Sonobe T; Nannka S; Shizuka K; Fkuju T; Hashimoto H
    Int J Artif Organs; 1998 Apr; 21(4):225-8. PubMed ID: 9649064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemolysis test of disposable type vibrating flow pump.
    Kobayashi S; Nitta S; Yambe T; Sonobe T; Naganuma S; Hashimoto H
    Artif Organs; 1997 Jul; 21(7):691-3. PubMed ID: 9212940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis.
    Yano T; Sekine K; Mitoh A; Mitamura Y; Okamoto E; Kim DW; Nishimura I; Murabayashi S; Yozu R
    Artif Organs; 2003 Oct; 27(10):920-5. PubMed ID: 14616536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniature vibrating flow blood pump using a cross-slider mechanism for external shunt catheter.
    Kawano S; Isoyama T; Kobayashi S; Arai H; Takiura K; Saito I; Chinzei T; Abe Y; Yambe T; Nitta S; Imachi K; Hashimoto H
    Artif Organs; 2003 Jan; 27(1):73-7. PubMed ID: 12534716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of the three-dimensional blood flow in the korean artificial heart.
    Shim EB; Yeo JY; Ko HJ; Youn CH; Lee YR; Park CY; Min BG; Sun K
    Artif Organs; 2003 Jan; 27(1):49-60. PubMed ID: 12534713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractal dimension analysis of the oscillated blood flow with a vibrating flow pump.
    Yambe T; Sonobe T; Naganuma S; Kobayashi S; Nanka S; Akiho H; Kakinuma Y; Mitsuoka M; Chiba S; Ohsawa N
    Artif Organs; 1995 Jul; 19(7):729-33. PubMed ID: 8572984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaotic dynamics in circulation with Tohoku University vibrating flow pump.
    Nitta S; Yambe T; Kobayashi S; Hashimoto H; Yoshizawa M; Mastuki H; Tabayashi K; Takeda H
    Artif Organs; 1999 Jan; 23(1):119-23. PubMed ID: 9950190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood compatible design of a pulsatile blood pump using computational fluid dynamics and computer-aided design and manufacturing technology.
    Okamoto E; Hashimoto T; Inoue T; Mitamura Y
    Artif Organs; 2003 Jan; 27(1):61-7. PubMed ID: 12534714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics.
    Apel J; Paul R; Klaus S; Siess T; Reul H
    Artif Organs; 2001 May; 25(5):341-7. PubMed ID: 11403662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Investigation of computational fluid dynamics application in blood pumps].
    Wang F; Qian K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1033-6. PubMed ID: 17121348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and evaluation of totally implantable ventricular assist system using a vibrating flow pump and transcutaneous energy transmission system with amorphous fibers.
    Yambe T; Hashimoto H; Kobayashi S; Sonobe T; Naganuma S; Nanka SS; Matsuki H; Yoshizawa M; Tabayashi K; Takayasu H; Takeda H; Nitta S
    Heart Vessels; 1997; Suppl 12():41-3. PubMed ID: 9476541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of an unstructured grid algorithm to artificial heart valve simulations.
    Hsu AT; Yun JX; Hwang NH
    ASAIO J; 1999; 45(6):581-6. PubMed ID: 10593690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow study on a newly developed impeller for a left ventricular assist device.
    Hsu CH
    J Artif Organs; 2003; 6(2):92-100. PubMed ID: 14598109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total vascular resistance and blood flow frequency during left ventricular assistance using a vibrating flow pump.
    Kobayashi S; Owada N; Yambe T; Nitta S; Fukuju T; Hongoh T; Hashimoto H
    Artif Organs; 1999 Aug; 23(8):732-5. PubMed ID: 10463498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational design and experimental performance testing of an axial-flow pediatric ventricular assist device.
    Throckmorton AL; Lim DS; McCulloch MA; Jiang W; Song X; Allaire PE; Wood HG; Olsen DB
    ASAIO J; 2005; 51(5):629-35. PubMed ID: 16322729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Left heart bypass using the oscillated blood flow with totally implantable vibrating flow pump.
    Yambe T; Owada N; Kobayashi S; Sonobe T; Naganuma S; Nanka S; Hashimoto H; Yoshizawa M; Tabayashi K; Takayasu H; Takeda H; Nitta S
    Artif Organs; 1998 May; 22(5):426-9. PubMed ID: 9609353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.