These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12534712)

  • 21. Recent progress on the vibrating flow pump as a totally implantable ventricular assist device.
    Yambe T; Kobayashi SI; Yoshizawa M; Tanaka A; Matsuki H; Sato F; Tabayashi K; Nitta SI
    Artif Organs; 2001 Sep; 25(9):688-91. PubMed ID: 11722343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a radial ventricular assist device using numerical predictions and experimental haemolysis.
    Carswell D; Hilton A; Chan C; McBride D; Croft N; Slone A; Cross M; Foster G
    Med Eng Phys; 2013 Aug; 35(8):1197-203. PubMed ID: 23384537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational approach for probing the flow through artificial heart devices.
    Kiris C; Kwak D; Rogers S; Chang ID
    J Biomech Eng; 1997 Nov; 119(4):452-60. PubMed ID: 9407285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear mathematical analysis of the hemodynamic parameters during left ventricular assistance with oscillated blood flow.
    Yambe T; Kobayashi S; Sonobe T; Naganuma S; Nanka S; Hashimoto H; Yoshizawa M; Tabayashi K; Takayasu H; Takeda H; Nitta S
    Artif Organs; 1997 Jul; 21(7):625-9. PubMed ID: 9212928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a continuous flow centrifugal pediatric ventricular assist device.
    Throckmorton AL; Wood HG; Day SW; Song X; Click PC; Allaire PE; Olsen DB
    Int J Artif Organs; 2003 Nov; 26(11):1015-31. PubMed ID: 14708831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational fluid dynamics and digital particle image velocimetry study of the flow through an optimized micro-axial blood pump.
    Triep M; Brücker C; Schröder W; Siess T
    Artif Organs; 2006 May; 30(5):384-91. PubMed ID: 16683957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational fluid dynamics as a development tool for rotary blood pumps.
    Burgreen GW; Antaki JF; Wu ZJ; Holmes AJ
    Artif Organs; 2001 May; 25(5):336-40. PubMed ID: 11403661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel integrated rotor of axial blood flow pump designed with computational fluid dynamics.
    Zhang Y; Xue S; Gui XM; Sun HS; Zhang H; Zhu XD; Hu SS
    Artif Organs; 2007 Jul; 31(7):580-5. PubMed ID: 17584484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of computational fluid dynamics techniques to blood pumps.
    Sukumar R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A biocompatible flow chamber to study the hemodynamic performance of prosthetic heart valves.
    Yin W; Ngwe EC; Rubenstein DA
    ASAIO J; 2012; 58(5):470-80. PubMed ID: 22951894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical analysis of blood flow in the clearance regions of a continuous flow artificial heart pump.
    Anderson J; Wood HG; Allaire PE; Olsen DB
    Artif Organs; 2000 Jun; 24(6):492-500. PubMed ID: 10886072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hemocompatibility evaluation with experimental and computational fluid dynamic analyses for a monopivot circulatory assist pump.
    Nishida M; Maruyama O; Kosaka R; Yamane T; Kogure H; Kawamura H; Yamamoto Y; Kuwana K; Sankai Y; Tsutsui T
    Artif Organs; 2009 Apr; 33(4):378-86. PubMed ID: 19335415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluctuations of the hemodynamic derivatives during left ventricular assistance using oscillated blood flow.
    Yambe T; Kobayashi S; Nanka S; Naganuma S; Nitta S; Matsuki H; Abe K; Yoshizawa M; Fukuju T; Tabayashi K; Takeda H; Hashimoto H
    Artif Organs; 1996 Jun; 20(6):637-40. PubMed ID: 8817970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and performance testing of an axial-flow ventricular assist device developed at the Fu Wai Hospital in Beijing.
    Zhang Y; Hu SS; Zhou JY; Sun HS; Zhang H; Zheng Z; Zhu XD; Li GR; Gui XM; Zhan Z; Jin DH
    Int J Artif Organs; 2008 Nov; 31(11):983-7. PubMed ID: 19089800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peripheral vascular resistances during total left heart bypass with an oscillated blood flow.
    Yambe T; Kawano S; Nanka S; Kobayashi S; Tanaka A; Owada N; Yoshizawa M; Abe K; Tabayashi K; Takeda H; Hashimoto H; Nitta S
    Artif Organs; 1999 Aug; 23(8):747-50. PubMed ID: 10463501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation of the BP-80 blood pump.
    Watanabe N; Karsak O; Neudel F; Kink T; Apel J; Fujimoto T; Reul H; Takatani S
    Artif Organs; 2001 Sep; 25(9):733-9. PubMed ID: 11722352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method.
    Choi CR; Kim CN
    ASAIO J; 2009; 55(5):428-37. PubMed ID: 19730001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump.
    Qian KX; Wang FQ; Zeng P; Ru WM; Yuan HY; Feng ZG
    J Med Eng Technol; 2006; 30(6):353-7. PubMed ID: 17060163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational fluid dynamics insights in the design of mechanical heart valves.
    Kelly SG
    Artif Organs; 2002 Jul; 26(7):608-13. PubMed ID: 12081519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.