These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12534714)

  • 1. Blood compatible design of a pulsatile blood pump using computational fluid dynamics and computer-aided design and manufacturing technology.
    Okamoto E; Hashimoto T; Inoue T; Mitamura Y
    Artif Organs; 2003 Jan; 27(1):61-7. PubMed ID: 12534714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a miniature implantable left ventricular assist device using CAD/CAM technology.
    Okamoto E; Hashimoto T; Mitamura Y
    J Artif Organs; 2003; 6(3):162-7. PubMed ID: 14598098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear stress evaluation on blood cells using computational fluid dynamics.
    Mitoh A; Suebe Y; Kashima T; Koyabu E; Sobu E; Okamoto E; Mitamura Y; Nishimura I
    Biomed Mater Eng; 2020; 31(3):169-178. PubMed ID: 32597794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Investigation of computational fluid dynamics application in blood pumps].
    Wang F; Qian K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1033-6. PubMed ID: 17121348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research on flow characteristics in a non-blade centrifugal blood pump based on CFD technology].
    Cheng Y; Luo B; Wu W; Jiang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1133-7. PubMed ID: 21089685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational fluid dynamics analysis of an intra-cardiac axial flow pump.
    Mitoh A; Yano T; Sekine K; Mitamura Y; Okamoto E; Kim DW; Yozu R; Kawada S
    Artif Organs; 2003 Jan; 27(1):34-40. PubMed ID: 12534711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics.
    Apel J; Paul R; Klaus S; Siess T; Reul H
    Artif Organs; 2001 May; 25(5):341-7. PubMed ID: 11403662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.
    Yu H; Janiga G; Thévenin D
    Artif Organs; 2016 Apr; 40(4):341-52. PubMed ID: 26526039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational flow visualization in vibrating flow pump type artificial heart by unstructured grid.
    Kato T; Kawano S; Nakahashi K; Yambe T; Nitta S; Hashimoto H
    Artif Organs; 2003 Jan; 27(1):41-8. PubMed ID: 12534712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow Ventricular Assist Device (VAD).
    Song X; Wood HG; Olsen D
    J Biomech Eng; 2004 Apr; 126(2):180-7. PubMed ID: 15179847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear-slip Mesh Update Method: implementation and applications.
    Behr M; Arora D
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):113-23. PubMed ID: 12745425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemocompatibility evaluation with experimental and computational fluid dynamic analyses for a monopivot circulatory assist pump.
    Nishida M; Maruyama O; Kosaka R; Yamane T; Kogure H; Kawamura H; Yamamoto Y; Kuwana K; Sankai Y; Tsutsui T
    Artif Organs; 2009 Apr; 33(4):378-86. PubMed ID: 19335415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.
    Zhu L; Zhang X; Yao Z
    Artif Organs; 2010 Mar; 34(3):185-92. PubMed ID: 20447042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational flow study of the continuous flow ventricular assist device, prototype number 3 blood pump.
    Anderson JB; Wood HG; Allaire PE; Bearnson G; Khanwilkar P
    Artif Organs; 2000 May; 24(5):377-85. PubMed ID: 10848679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump.
    Fang P; Du J; Yu S
    Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis.
    Yano T; Sekine K; Mitoh A; Mitamura Y; Okamoto E; Kim DW; Nishimura I; Murabayashi S; Yozu R
    Artif Organs; 2003 Oct; 27(10):920-5. PubMed ID: 14616536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of the BP-80 blood pump.
    Watanabe N; Karsak O; Neudel F; Kink T; Apel J; Fujimoto T; Reul H; Takatani S
    Artif Organs; 2001 Sep; 25(9):733-9. PubMed ID: 11722352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a continuous flow centrifugal pediatric ventricular assist device.
    Throckmorton AL; Wood HG; Day SW; Song X; Click PC; Allaire PE; Olsen DB
    Int J Artif Organs; 2003 Nov; 26(11):1015-31. PubMed ID: 14708831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.