BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12534718)

  • 1. Investigation on the mechanical properties of contracted collagen gels as a scaffold for tissue engineering.
    Feng Z; Yamato M; Akutsu T; Nakamura T; Okano T; Umezu M
    Artif Organs; 2003 Jan; 27(1):84-91. PubMed ID: 12534718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of the mechanical properties of contracted collagen gels populated with rat fibroblasts or cardiomyocytes.
    Feng Z; Matsumoto T; Nakamura T
    J Artif Organs; 2003; 6(3):192-6. PubMed ID: 14598103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes.
    Feng Z; Seya D; Kitajima T; Kosawada T; Nakamura T; Umezu M
    J Artif Organs; 2010 Sep; 13(3):139-44. PubMed ID: 20614226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraint stress, microstructural characteristics, and enhanced mechanical properties of a special fibroblast-embedded collagen construct.
    Feng Z; Ishibashi M; Nomura Y; Kitajima T; Nakamura T
    Artif Organs; 2006 Nov; 30(11):870-7. PubMed ID: 17062110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts.
    Feng Z; Tateishi Y; Nomura Y; Kitajima T; Nakamura T
    J Artif Organs; 2006; 9(4):220-5. PubMed ID: 17171400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of fibrin into a collagen-glycosaminoglycan matrix results in a scaffold with improved mechanical properties and enhanced capacity to resist cell-mediated contraction.
    Brougham CM; Levingstone TJ; Jockenhoevel S; Flanagan TC; O'Brien FJ
    Acta Biomater; 2015 Oct; 26():205-14. PubMed ID: 26297884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of structural and mechanical anisotropy in fibroblast populated collagen gels.
    Thomopoulos S; Fomovsky GM; Holmes JW
    J Biomech Eng; 2005 Oct; 127(5):742-50. PubMed ID: 16248303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple combined floating and anchored collagen gel for enhancing mechanical strength of culture system.
    Harada I; Kim SG; Cho CS; Kurosawa H; Akaike T
    J Biomed Mater Res A; 2007 Jan; 80(1):123-30. PubMed ID: 16983652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical and mechanical properties of RAFT-stabilised collagen gels for tissue engineering applications.
    Kayal C; Shipley RJ; Phillips JB
    J Mech Behav Biomed Mater; 2019 Nov; 99():216-224. PubMed ID: 31394492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genipin-induced changes in collagen gels: correlation of mechanical properties to fluorescence.
    Sundararaghavan HG; Monteiro GA; Lapin NA; Chabal YJ; Miksan JR; Shreiber DI
    J Biomed Mater Res A; 2008 Nov; 87(2):308-20. PubMed ID: 18181104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical stimulation of tissue engineered tendon constructs: effect of scaffold materials.
    Nirmalanandhan VS; Dressler MR; Shearn JT; Juncosa-Melvin N; Rao M; Gooch C; Bradica G; Butler DL
    J Biomech Eng; 2007 Dec; 129(6):919-23. PubMed ID: 18067397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confined compression of a tissue-equivalent: collagen fibril and cell alignment in response to anisotropic strain.
    Girton TS; Barocas VH; Tranquillo RT
    J Biomech Eng; 2002 Oct; 124(5):568-75. PubMed ID: 12405600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study.
    Hu JJ; Liu YC; Chen GW; Wang MX; Lee PY
    Biomech Model Mechanobiol; 2013 Oct; 12(5):849-68. PubMed ID: 23096240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels.
    Henshaw DR; Attia E; Bhargava M; Hannafin JA
    J Orthop Res; 2006 Mar; 24(3):481-90. PubMed ID: 16453340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of collagen gels derived from rats of different ages.
    Wu CC; Ding SJ; Wang YH; Tang MJ; Chang HC
    J Biomater Sci Polym Ed; 2005; 16(10):1261-75. PubMed ID: 16268252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of cell and matrix mechanics using fluorescence excitation spectroscopy: Feasibility study in collagen gels containing fibroblasts.
    Padilla-Martinez JP; Wang R; Franco W
    Lasers Surg Med; 2016 Apr; 48(4):377-84. PubMed ID: 26990874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors related to contraction and mechanical strength of collagen gels seeded with canine endotenon cells.
    Chen MY; Sun Y; Zhao C; Zobitz ME; An KN; Moran SL; Amadio PC
    J Biomed Mater Res B Appl Biomater; 2007 Aug; 82(2):519-25. PubMed ID: 17279567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of fibroblast-controlled strengthening and remodeling of uniaxially constrained collagen gels.
    Kroon M
    J Biomech Eng; 2010 Nov; 132(11):111008. PubMed ID: 21034149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.