BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12534816)

  • 21. Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil.
    Baek KH; Yoon BD; Cho DH; Kim BH; Oh HM; Kim HS
    J Microbiol Biotechnol; 2009 Apr; 19(4):339-45. PubMed ID: 19420987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments.
    Yergeau E; Arbour M; Brousseau R; Juck D; Lawrence JR; Masson L; Whyte LG; Greer CW
    Appl Environ Microbiol; 2009 Oct; 75(19):6258-67. PubMed ID: 19684169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste.
    Maciel BM; Santos AC; Dias JC; Vidal RO; Dias RJ; Gross E; Cascardo JC; Rezende RP
    Genet Mol Res; 2009 Mar; 8(1):375-88. PubMed ID: 19440973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation.
    Omrani R; Spini G; Puglisi E; Saidane D
    Biodegradation; 2018 Apr; 29(2):187-209. PubMed ID: 29492776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.
    Wu M; Ye X; Chen K; Li W; Yuan J; Jiang X
    Environ Pollut; 2017 Apr; 223():657-664. PubMed ID: 28196719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].
    Yang Q; Wu ML; Nie MQ; Wang TT; Zhang MH
    Huan Jing Ke Xue; 2015 May; 36(5):1856-63. PubMed ID: 26314140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils.
    Mills DK; Fitzgerald K; Litchfield CD; Gillevet PM
    J Microbiol Methods; 2003 Jul; 54(1):57-74. PubMed ID: 12732422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional gene abundances (nahAc, alkB, xylE) in the assessment of the efficacy of bioremediation.
    Salminen JM; Tuomi PM; Jørgensen KS
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):638-52. PubMed ID: 18592409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Remediation of Crude Oil-Polluted Soil by the Bacterial Rhizosphere Community of
    Yu Y; Zhang Y; Zhao N; Guo J; Xu W; Ma M; Li X
    Int J Environ Res Public Health; 2020 Feb; 17(5):. PubMed ID: 32106510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers.
    Tuomi PM; Salminen JM; Jørgensen KS
    FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Microbial Community Structure Shift During Bioremediation of Petroleum Contaminated Soil Using High Throughput Sequencing].
    Qi YY; Wu ML; Zhu CC; Ye XQ; Xu HN
    Huan Jing Ke Xue; 2019 Feb; 40(2):869-875. PubMed ID: 30628355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of catechol dioxygenase gene expression in soil during degradation of 2,4-dichlorophenol.
    Lillis L; Clipson N; Doyle E
    FEMS Microbiol Ecol; 2010 Aug; 73(2):363-9. PubMed ID: 20533943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil.
    Kirk JL; Klironomos JN; Lee H; Trevors JT
    Environ Pollut; 2005 Feb; 133(3):455-65. PubMed ID: 15519721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional adaptation of microbial communities from jet fuel-contaminated soil under bioremediation treatment: simulation of pollutant rebound.
    Korotkevych O; Josefiova J; Praveckova M; Cajthaml T; Stavelova M; Brennerova MV
    FEMS Microbiol Ecol; 2011 Oct; 78(1):137-49. PubMed ID: 21726245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil.
    Yrjälä K; Keskinen AK; Akerman ML; Fortelius C; Sipilä TP
    Environ Pollut; 2010 May; 158(5):1680-8. PubMed ID: 20022155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Re-use of remediated soils for the bioremediation of waste oil sludge.
    Makadia TH; Adetutu EM; Simons KL; Jardine D; Sheppard PJ; Ball AS
    J Environ Manage; 2011 Mar; 92(3):866-71. PubMed ID: 21115217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amplified functional DNA restriction analysis to determine catechol 2,3-dioxygenase gene diversity in soil bacteria.
    Junca H; Pieper DH
    J Microbiol Methods; 2003 Dec; 55(3):697-708. PubMed ID: 14607412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in bacterial populations and in biphenyl dioxygenase gene diversity in a polychlorinated biphenyl-polluted soil after introduction of willow trees for rhizoremediation.
    de Cárcer DA; Martín M; Karlson U; Rivilla R
    Appl Environ Microbiol; 2007 Oct; 73(19):6224-32. PubMed ID: 17693557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversity of 16S rRNA and dioxygenase genes detected in coal-tar-contaminated site undergoing active bioremediation.
    Kumar M; Khanna S
    J Appl Microbiol; 2010 Apr; 108(4):1252-62. PubMed ID: 19796097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol.
    Toyama T; Sei K; Yu N; Kumada H; Inoue D; Hoang H; Soda S; Chang YC; Kikuchi S; Fujita M; Ike M
    Water Res; 2009 Aug; 43(15):3765-76. PubMed ID: 19541342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.