These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 12534820)
1. The response of Leuconostoc mesenteroides to low external oxidoreduction potential generated by hydrogen gas. Bourel G; Henini S; Diviès C; Garmyn D J Appl Microbiol; 2003; 94(2):280-8. PubMed ID: 12534820 [TBL] [Abstract][Full Text] [Related]
2. Non-equivalence of hydrogen transfer from glucose to the pro-R and pro-S methylene positions of ethanol during fermentation by Leuconostoc mesenteroides quantified by 2H NMR at natural abundance. Robins RJ; Pétavy F; Nemmaoui Y; Ayadi F; Silvestre V; Zhang BL J Biol Chem; 2008 Apr; 283(15):9704-12. PubMed ID: 18258593 [TBL] [Abstract][Full Text] [Related]
3. Influence of carboxylic acids on the stereospecific nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases of Leuconostoc mesenteroides. Doelle HW J Bacteriol; 1971 Dec; 108(3):1290-5. PubMed ID: 4333321 [TBL] [Abstract][Full Text] [Related]
4. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture. Larsen N; Werner BB; Vogensen FK; Jespersen L J Dairy Sci; 2015 Mar; 98(3):1640-51. PubMed ID: 25597975 [TBL] [Abstract][Full Text] [Related]
5. Growth and bacteriocin production kinetics of Leuconostoc mesenteroides E131. Drosinos EH; Mataragas M; Nasis P; Galiotou M; Metaxopoulos J J Appl Microbiol; 2005; 99(6):1314-23. PubMed ID: 16313403 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of an oligopeptide transport system in Leuconostoc mesenteroides subsp. mesenteroides CNRZ 1463. Germain-Alpettaz V; Foucaud-Scheunemann C Lett Appl Microbiol; 2002; 35(1):68-73. PubMed ID: 12081553 [TBL] [Abstract][Full Text] [Related]
8. Influence of nutrients on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Mataragas M; Drosinos EH; Tsakalidou E; Metaxopoulos J Antonie Van Leeuwenhoek; 2004 Apr; 85(3):191-8. PubMed ID: 15031648 [TBL] [Abstract][Full Text] [Related]
9. Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active D-lactate dehydrogenase. Li L; Shin SY; Lee KW; Han NS Lett Appl Microbiol; 2014 Oct; 59(4):404-11. PubMed ID: 24888766 [TBL] [Abstract][Full Text] [Related]
10. Reduction of D-lactate content in sauerkraut using starter cultures of recombinant Leuconostoc mesenteroides expressing the ldhL gene. Jin Q; Li L; Moon JS; Cho SK; Kim YJ; Lee SJ; Han NS J Biosci Bioeng; 2016 May; 121(5):479-83. PubMed ID: 26472127 [TBL] [Abstract][Full Text] [Related]
11. Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation. Krier F; Revol-Junelles AM; Germain P Appl Microbiol Biotechnol; 1998 Sep; 50(3):359-63. PubMed ID: 9802221 [TBL] [Abstract][Full Text] [Related]
12. Characterization of amino acid transport in the dairy strain Leuconostoc mesenteroides subsp. mesenteroides CNRZ 1273. Gendrot F; Foucaud-Scheunemann C; Ferchichi M; Hemme D Lett Appl Microbiol; 2002; 35(4):291-5. PubMed ID: 12358690 [TBL] [Abstract][Full Text] [Related]
14. Electrogenic malate uptake and improved growth energetics of the malolactic bacterium Leuconostoc oenos grown on glucose-malate mixtures. Loubiere P; Salou P; Leroy MJ; Lindley ND; Pareilleux A J Bacteriol; 1992 Aug; 174(16):5302-8. PubMed ID: 1644757 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic cells of Bacillus cereus F4430/73 respond to low oxidoreduction potential by metabolic readjustments and activation of enterotoxin expression. Zigha A; Rosenfeld E; Schmitt P; Duport C Arch Microbiol; 2006 Apr; 185(3):222-33. PubMed ID: 16470372 [TBL] [Abstract][Full Text] [Related]
16. Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides. Schmitt P; Vasseur C; Phalip V; Huang DQ; Diviès C; Prévost H Appl Microbiol Biotechnol; 1997 Jun; 47(6):715-8. PubMed ID: 9237392 [TBL] [Abstract][Full Text] [Related]
17. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides: revised kinetic mechanism and kinetics of ATP inhibition. Levy HR; Christoff M; Ingulli J; Ho EM Arch Biochem Biophys; 1983 Apr; 222(2):473-88. PubMed ID: 6847197 [TBL] [Abstract][Full Text] [Related]
18. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. Riondet C; Cachon R; Waché Y; Alcaraz G; Diviès C J Bacteriol; 2000 Feb; 182(3):620-6. PubMed ID: 10633094 [TBL] [Abstract][Full Text] [Related]
19. [Effect of L-malate on glucose fermentation by Leuconostoc mesenteroides]. Kandler O; Winter J; Stetter KO Arch Mikrobiol; 1973 Mar; 90(1):65-75. PubMed ID: 4706775 [No Abstract] [Full Text] [Related]
20. Intracellular pH and the role of D-lactate dehydrogenase in the production of metabolic end products by Leuconostoc lactis. FitzGerald RJ; Doonan S; McKay LL; Cogan TM J Dairy Res; 1992 Aug; 59(3):359-67. PubMed ID: 1401357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]