BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12534977)

  • 1. Nicotinic activation of reticulospinal cells involved in the control of swimming in lampreys.
    Le Ray D; Brocard F; Bourcier-Lucas C; Auclair F; Lafaille P; Dubuc R
    Eur J Neurosci; 2003 Jan; 17(1):137-48. PubMed ID: 12534977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parallel cholinergic brainstem pathway for enhancing locomotor drive.
    Smetana R; Juvin L; Dubuc R; Alford S
    Nat Neurosci; 2010 Jun; 13(6):731-8. PubMed ID: 20473293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod.
    Ryczko D; Auclair F; Cabelguen JM; Dubuc R
    J Comp Neurol; 2016 May; 524(7):1361-83. PubMed ID: 26470600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Brainstem Neural Substrate for Stopping Locomotion.
    Grätsch S; Auclair F; Demers O; Auguste E; Hanna A; Büschges A; Dubuc R
    J Neurosci; 2019 Feb; 39(6):1044-1057. PubMed ID: 30541913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descending Dopaminergic Inputs to Reticulospinal Neurons Promote Locomotor Movements.
    Ryczko D; Grätsch S; Alpert MH; Cone JJ; Kasemir J; Ruthe A; Beauséjour PA; Auclair F; Roitman MF; Alford S; Dubuc R
    J Neurosci; 2020 Oct; 40(44):8478-8490. PubMed ID: 32998974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nigral Glutamatergic Neurons Control the Speed of Locomotion.
    Ryczko D; Grätsch S; Schläger L; Keuyalian A; Boukhatem Z; Garcia C; Auclair F; Büschges A; Dubuc R
    J Neurosci; 2017 Oct; 37(40):9759-9770. PubMed ID: 28924005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region.
    Brocard F; Dubuc R
    J Neurophysiol; 2003 Sep; 90(3):1714-27. PubMed ID: 12736238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chapter 4--supraspinal control of locomotion: the mesencephalic locomotor region.
    Le Ray D; Juvin L; Ryczko D; Dubuc R
    Prog Brain Res; 2011; 188():51-70. PubMed ID: 21333802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of the mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys.
    Sirota MG; Di Prisco GV; Dubuc R
    Eur J Neurosci; 2000 Nov; 12(11):4081-92. PubMed ID: 11069605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neuronal substrate for a state-dependent modulation of sensory inputs in the brainstem.
    Le Ray D; Juvin L; Boutin T; Auclair F; Dubuc R
    Eur J Neurosci; 2010 Jul; 32(1):53-9. PubMed ID: 20576031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscarinic modulation of the trigemino-reticular pathway in lampreys.
    Le Ray D; Brocard F; Dubuc R
    J Neurophysiol; 2004 Aug; 92(2):926-38. PubMed ID: 15044522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phasic modulation of transmission from vestibular inputs to reticulospinal neurons during fictive locomotion in lampreys.
    Bussières N; Dubuc R
    Brain Res; 1992 Jun; 582(1):147-53. PubMed ID: 1323371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mesencephalic locomotor region. II. Projections to reticulospinal neurons.
    Garcia-Rill E; Skinner RD
    Brain Res; 1987 May; 411(1):13-20. PubMed ID: 3607422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos.
    Perrins R; Roberts A
    J Neurophysiol; 1995 Mar; 73(3):1013-9. PubMed ID: 7608751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Brainstem Neurons During Mesencephalic Locomotor Region-Evoked Locomotion in the Cat.
    Opris I; Dai X; Johnson DMG; Sanchez FJ; Villamil LM; Xie S; Lee-Hauser CR; Chang S; Jordan LM; Noga BR
    Front Syst Neurosci; 2019; 13():69. PubMed ID: 31798423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Specific Population of Reticulospinal Neurons Controls the Termination of Locomotion.
    Juvin L; Grätsch S; Trillaud-Doppia E; Gariépy JF; Büschges A; Dubuc R
    Cell Rep; 2016 Jun; 15(11):2377-86. PubMed ID: 27264174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic Modulation of Locomotor Circuits in Vertebrates.
    Le Ray D; Bertrand SS; Dubuc R
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus effects of the medial pontine reticular formation and the mesencephalic locomotor region upon medullary reticulospinal neurons in acute decerebrate cats.
    Iwakiri H; Oka T; Takakusaki K; Mori S
    Neurosci Res; 1995 Aug; 23(1):47-53. PubMed ID: 7501300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region.
    Shefchyk SJ; Jordan LM
    J Neurophysiol; 1985 Jun; 53(6):1345-55. PubMed ID: 4009222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.