These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12534977)

  • 1. Nicotinic activation of reticulospinal cells involved in the control of swimming in lampreys.
    Le Ray D; Brocard F; Bourcier-Lucas C; Auclair F; Lafaille P; Dubuc R
    Eur J Neurosci; 2003 Jan; 17(1):137-48. PubMed ID: 12534977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parallel cholinergic brainstem pathway for enhancing locomotor drive.
    Smetana R; Juvin L; Dubuc R; Alford S
    Nat Neurosci; 2010 Jun; 13(6):731-8. PubMed ID: 20473293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod.
    Ryczko D; Auclair F; Cabelguen JM; Dubuc R
    J Comp Neurol; 2016 May; 524(7):1361-83. PubMed ID: 26470600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Brainstem Neural Substrate for Stopping Locomotion.
    Grätsch S; Auclair F; Demers O; Auguste E; Hanna A; Büschges A; Dubuc R
    J Neurosci; 2019 Feb; 39(6):1044-1057. PubMed ID: 30541913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descending Dopaminergic Inputs to Reticulospinal Neurons Promote Locomotor Movements.
    Ryczko D; Grätsch S; Alpert MH; Cone JJ; Kasemir J; Ruthe A; Beauséjour PA; Auclair F; Roitman MF; Alford S; Dubuc R
    J Neurosci; 2020 Oct; 40(44):8478-8490. PubMed ID: 32998974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nigral Glutamatergic Neurons Control the Speed of Locomotion.
    Ryczko D; Grätsch S; Schläger L; Keuyalian A; Boukhatem Z; Garcia C; Auclair F; Büschges A; Dubuc R
    J Neurosci; 2017 Oct; 37(40):9759-9770. PubMed ID: 28924005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region.
    Brocard F; Dubuc R
    J Neurophysiol; 2003 Sep; 90(3):1714-27. PubMed ID: 12736238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chapter 4--supraspinal control of locomotion: the mesencephalic locomotor region.
    Le Ray D; Juvin L; Ryczko D; Dubuc R
    Prog Brain Res; 2011; 188():51-70. PubMed ID: 21333802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of the mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys.
    Sirota MG; Di Prisco GV; Dubuc R
    Eur J Neurosci; 2000 Nov; 12(11):4081-92. PubMed ID: 11069605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neuronal substrate for a state-dependent modulation of sensory inputs in the brainstem.
    Le Ray D; Juvin L; Boutin T; Auclair F; Dubuc R
    Eur J Neurosci; 2010 Jul; 32(1):53-9. PubMed ID: 20576031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscarinic modulation of the trigemino-reticular pathway in lampreys.
    Le Ray D; Brocard F; Dubuc R
    J Neurophysiol; 2004 Aug; 92(2):926-38. PubMed ID: 15044522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phasic modulation of transmission from vestibular inputs to reticulospinal neurons during fictive locomotion in lampreys.
    Bussières N; Dubuc R
    Brain Res; 1992 Jun; 582(1):147-53. PubMed ID: 1323371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mesencephalic locomotor region. II. Projections to reticulospinal neurons.
    Garcia-Rill E; Skinner RD
    Brain Res; 1987 May; 411(1):13-20. PubMed ID: 3607422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos.
    Perrins R; Roberts A
    J Neurophysiol; 1995 Mar; 73(3):1013-9. PubMed ID: 7608751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Brainstem Neurons During Mesencephalic Locomotor Region-Evoked Locomotion in the Cat.
    Opris I; Dai X; Johnson DMG; Sanchez FJ; Villamil LM; Xie S; Lee-Hauser CR; Chang S; Jordan LM; Noga BR
    Front Syst Neurosci; 2019; 13():69. PubMed ID: 31798423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Specific Population of Reticulospinal Neurons Controls the Termination of Locomotion.
    Juvin L; Grätsch S; Trillaud-Doppia E; Gariépy JF; Büschges A; Dubuc R
    Cell Rep; 2016 Jun; 15(11):2377-86. PubMed ID: 27264174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic Modulation of Locomotor Circuits in Vertebrates.
    Le Ray D; Bertrand SS; Dubuc R
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus effects of the medial pontine reticular formation and the mesencephalic locomotor region upon medullary reticulospinal neurons in acute decerebrate cats.
    Iwakiri H; Oka T; Takakusaki K; Mori S
    Neurosci Res; 1995 Aug; 23(1):47-53. PubMed ID: 7501300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region.
    Shefchyk SJ; Jordan LM
    J Neurophysiol; 1985 Jun; 53(6):1345-55. PubMed ID: 4009222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.