These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12535073)

  • 21. Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae.
    Park H; Hwang YS
    J Microbiol; 2008 Oct; 46(5):542-8. PubMed ID: 18974956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Saccharomyces cerevisiae colony growth and ageing: biphasic growth accompanied by changes in gene expression.
    Meunier JR; Choder M
    Yeast; 1999 Sep; 15(12):1159-69. PubMed ID: 10487919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic dissection of transcriptional regulation in budding yeast.
    Brem RB; Yvert G; Clinton R; Kruglyak L
    Science; 2002 Apr; 296(5568):752-5. PubMed ID: 11923494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional networks: reverse-engineering gene regulation on a global scale.
    Chua G; Robinson MD; Morris Q; Hughes TR
    Curr Opin Microbiol; 2004 Dec; 7(6):638-46. PubMed ID: 15556037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Doxycycline, the drug used to control the tet-regulatable promoter system, has no effect on global gene expression in Saccharomyces cerevisiae.
    Wishart JA; Hayes A; Wardleworth L; Zhang N; Oliver SG
    Yeast; 2005 May; 22(7):565-9. PubMed ID: 15942933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media.
    Lai LC; Kosorukoff AL; Burke PV; Kwast KE
    Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic response to iron deficiency in Saccharomyces cerevisiae.
    Shakoury-Elizeh M; Protchenko O; Berger A; Cox J; Gable K; Dunn TM; Prinz WA; Bard M; Philpott CC
    J Biol Chem; 2010 May; 285(19):14823-33. PubMed ID: 20231268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic diversification of cells during the development of yeast colonies.
    Váchová L; Kucerová H; Devaux F; Ulehlová M; Palková Z
    Environ Microbiol; 2009 Feb; 11(2):494-504. PubMed ID: 19196279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability.
    Roosen J; Engelen K; Marchal K; Mathys J; Griffioen G; Cameroni E; Thevelein JM; De Virgilio C; De Moor B; Winderickx J
    Mol Microbiol; 2005 Feb; 55(3):862-80. PubMed ID: 15661010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.
    Sasaki H; Uemura H
    Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural Variation in
    Sirr A; Scott AC; Cromie GA; Ludlow CL; Ahyong V; Morgan TS; Gilbert T; Dudley AM
    G3 (Bethesda); 2018 Jan; 8(1):239-251. PubMed ID: 29138237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of ctr1Δ300, a high-affinity copper transporter with deletion of the cytosolic C-terminus in Saccharomyces cerevisiae under excess copper, leads to disruption of transition metal homeostasis and transcriptional remodelling of cellular processes.
    Schuller A; Auffermann G; Zoschke K; Schmidt U; Ostermann K; Rödel G
    Yeast; 2013 May; 30(5):201-18. PubMed ID: 23576094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology.
    Voordeckers K; De Maeyer D; van der Zande E; Vinces MD; Meert W; Cloots L; Ryan O; Marchal K; Verstrepen KJ
    Mol Microbiol; 2012 Oct; 86(1):225-39. PubMed ID: 22882838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene expression and survival changes in Saccharomyces cerevisiae during suspension culture.
    Johanson K; Allen PL; Gonzalez-Villalobos RA; Baker CB; D'Elia R; Hammond TG
    Biotechnol Bioeng; 2006 Apr; 93(6):1050-9. PubMed ID: 16440349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein kinase A, TOR, and glucose transport control the response to nutrient repletion in Saccharomyces cerevisiae.
    Slattery MG; Liko D; Heideman W
    Eukaryot Cell; 2008 Feb; 7(2):358-67. PubMed ID: 18156291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss of IRA2 suppresses the growth defect on low glucose caused by the snf3 mutation in Saccharomyces cerevisiae.
    Ramakrishnan V; Theodoris G; Bisson LF
    FEMS Yeast Res; 2007 Jan; 7(1):67-77. PubMed ID: 17311585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. N-terminal arm of Mcm1 is required for transcription of a subset of genes involved in maintenance of the cell wall.
    Abraham DS; Vershon AK
    Eukaryot Cell; 2005 Nov; 4(11):1808-19. PubMed ID: 16278448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide expression profile of the mnn2 Delta mutant of Saccharomyces cerevisiae.
    Corbacho I; Olivero I; Hohmann S; Sunnerhagen P; Hernández LM
    Antonie Van Leeuwenhoek; 2006; 89(3-4):485-94. PubMed ID: 16622789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein release in a Saccharomyces cerevisiae mutant does not depend on mitochondrial genome integrity and function.
    Zasheva D; Alexandar I
    Microbiol Res; 2005; 160(3):219-23. PubMed ID: 16035232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae.
    Roberts GG; Hudson AP
    Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.