BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12536262)

  • 1. Functional and structural analyses of trichloroethylene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments.
    Futamata H; Harayama S; Hiraishi A; Watanabe K
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):594-600. PubMed ID: 12536262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture.
    Futamata H; Nagano Y; Watanabe K; Hiraishi A
    Appl Environ Microbiol; 2005 Feb; 71(2):904-11. PubMed ID: 15691947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of plate-wash samples to monitor the fates of culturable bacteria in mercury- and trichloroethylene-contaminated soils.
    Mera N; Iwasaki K
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):437-45. PubMed ID: 17940764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation.
    Futamata H; Harayama S; Watanabe K
    Appl Environ Microbiol; 2001 Oct; 67(10):4671-7. PubMed ID: 11571171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance of phenol hydroxylase genotypes at high diversity in bioreactors exposed to step increases in phenol loading.
    Basile LA; Erijman L
    FEMS Microbiol Ecol; 2010 Aug; 73(2):336-48. PubMed ID: 20500527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis.
    Chen WM; Chang JS; Wu CH; Chang SC
    Res Microbiol; 2004 Oct; 155(8):672-80. PubMed ID: 15380556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial community structure and trichloroethylene degradation in groundwater.
    Humphries JA; Ashe AM; Smiley JA; Johnston CG
    Can J Microbiol; 2005 Jun; 51(6):433-9. PubMed ID: 16121220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation.
    Miller TR; Franklin MP; Halden RU
    FEMS Microbiol Ecol; 2007 May; 60(2):299-311. PubMed ID: 17386036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of trichloroethylene (TCE) by methanotrophic community.
    Shukla AK; Vishwakarma P; Upadhyay SN; Tripathi AK; Prasana HC; Dubey SK
    Bioresour Technol; 2009 May; 100(9):2469-74. PubMed ID: 19157866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria.
    Futamata H; Harayama S; Watanabe K
    Appl Microbiol Biotechnol; 2001 Mar; 55(2):248-53. PubMed ID: 11330722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdiversity of phenol hydroxylase genes among phenol-degrading isolates of Alcaligenes sp. from an activated sludge system.
    Zhang X; Gao P; Chao Q; Wang L; Senior E; Zhao L
    FEMS Microbiol Lett; 2004 Aug; 237(2):369-75. PubMed ID: 15321685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils.
    Supaphol S; Panichsakpatana S; Trakulnaleamsai S; Tungkananuruk N; Roughjanajirapa P; O'Donnell AG
    J Microbiol Methods; 2006 Jun; 65(3):432-41. PubMed ID: 16226327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil.
    Mahmood S; Paton GI; Prosser JI
    Environ Microbiol; 2005 Sep; 7(9):1349-60. PubMed ID: 16104858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trichloroethylene biodegradation by phenoloxidizing cultures grown from various conditions.
    Lee CY; Cheng SZ
    J Environ Sci Health B; 1998 Nov; 33(6):705-21. PubMed ID: 9830134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numadzuensis sp. nov.
    Kageyama C; Ohta T; Hiraoka K; Suzuki M; Okamoto T; Ohishi K
    Arch Microbiol; 2005 Jan; 183(1):56-65. PubMed ID: 15570416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic changes in microbial community structure and function in phenol-degrading microcosms inoculated with cells from a contaminated aquifer.
    Elliott DR; Scholes JD; Thornton SF; Rizoulis A; Banwart SA; Rolfe SA
    FEMS Microbiol Ecol; 2010 Feb; 71(2):247-59. PubMed ID: 19930459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol.
    Toyama T; Sei K; Yu N; Kumada H; Inoue D; Hoang H; Soda S; Chang YC; Kikuchi S; Fujita M; Ike M
    Water Res; 2009 Aug; 43(15):3765-76. PubMed ID: 19541342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resource availability influences the diversity of a functional group of heterotrophic soil bacteria.
    Langenheder S; Prosser JI
    Environ Microbiol; 2008 Sep; 10(9):2245-56. PubMed ID: 18479445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater.
    Connon SA; Tovanabootr A; Dolan M; Vergin K; Giovannoni SJ; Semprini L
    Environ Microbiol; 2005 Feb; 7(2):165-78. PubMed ID: 15658984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correspondence between community structure and function during succession in phenol- and phenol-plus-trichloroethene-fed sequencing batch reactors.
    Ayala-Del-Río HL; Callister SJ; Criddle CS; Tiedje JM
    Appl Environ Microbiol; 2004 Aug; 70(8):4950-60. PubMed ID: 15294835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.