These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 125363)

  • 1. The convenience of the use of allosteric "probes" for the study of lipid--protein interactions in biological membranes: thermodynamic considerations.
    Siñeriz F; Farias RN; Trucco RE
    J Theor Biol; 1975 Jul; 52(1):113-20. PubMed ID: 125363
    [No Abstract]   [Full Text] [Related]  

  • 2. Lipid-protein interactions in membranes: Arrhenius plots and Hill plots in membrane-bound (Ca 2+ )-ATPase of Escherichia coli.
    Siñeriz F; Farías RN; Trucco RE
    FEBS Lett; 1973 May; 32(1):30-2. PubMed ID: 4268493
    [No Abstract]   [Full Text] [Related]  

  • 3. Allosteric modulation of protein-protein interactions by individual lipid binding events.
    Cong X; Liu Y; Liu W; Liang X; Laganowsky A
    Nat Commun; 2017 Dec; 8(1):2203. PubMed ID: 29259178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic restrictions on the allosteric models through an analysis of the free energy of interaction between sites.
    Garay RP
    J Theor Biol; 1976 Dec; 63(2):421-41. PubMed ID: 1011855
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanism of the effects of lipid phase transitions on the Na+, K+-ATPase, and the role of protein conformational changes.
    Barnett RE; Palazzotto J
    Ann N Y Acad Sci; 1974; 242(0):69-76. PubMed ID: 4372931
    [No Abstract]   [Full Text] [Related]  

  • 6. Bacterial transport.
    Boos W
    Annu Rev Biochem; 1974; 43(0):123-46. PubMed ID: 4277372
    [No Abstract]   [Full Text] [Related]  

  • 7. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method.
    Su JG; Qi LS; Li CH; Zhu YY; Du HJ; Hou YX; Hao R; Wang JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022719. PubMed ID: 25215770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid-protein interactions in the structure of biological membranes.
    Lenaz G
    Subcell Biochem; 1974 Sep; 3(3):167-248. PubMed ID: 4373883
    [No Abstract]   [Full Text] [Related]  

  • 9. Thermodynamic and kinetic properties of electrogenic ion pumps.
    Läuger P
    Biochim Biophys Acta; 1984 Sep; 779(3):307-41. PubMed ID: 6089889
    [No Abstract]   [Full Text] [Related]  

  • 10. Reply to letters on "caloric catastrophe": Inadequacy of the energy available from ATP for membrane transport.
    Minkoff L; Damadian R
    Biophys J; 1974 Jan; 14(1):69-72. PubMed ID: 4272845
    [No Abstract]   [Full Text] [Related]  

  • 11. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.
    Cong X; Liu Y; Liu W; Liang X; Russell DH; Laganowsky A
    J Am Chem Soc; 2016 Apr; 138(13):4346-9. PubMed ID: 27015007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of allosteric membrane-bound enzymes through changes in membrane lipid compostition.
    Farías RN; Bloj B; Morero RD; Siñeriz F; Trucco RE
    Biochim Biophys Acta; 1975 Jun; 415(2):231-51. PubMed ID: 167865
    [No Abstract]   [Full Text] [Related]  

  • 13. Allosteric transition and substrate binding are entropy-driven in glucosamine-6-phosphate deaminase from Escherichia coli.
    Bustos-Jaimes I; Calcagno ML
    Arch Biochem Biophys; 2001 Oct; 394(2):156-60. PubMed ID: 11594728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allostery revealed within lipid binding events to membrane proteins.
    Patrick JW; Boone CD; Liu W; Conover GM; Liu Y; Cong X; Laganowsky A
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2976-2981. PubMed ID: 29507234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of lipid in energy transmission and conservation in functional biological membranes.
    Weiss DE
    Subcell Biochem; 1973; 2(3):201-35. PubMed ID: 4596631
    [No Abstract]   [Full Text] [Related]  

  • 16. Lateral phase separations in Escherichia coli membranes.
    Kleemann W; McConnell HM
    Biochim Biophys Acta; 1974 Apr; 345(2):220-30. PubMed ID: 4366812
    [No Abstract]   [Full Text] [Related]  

  • 17. Energetic methods to study bifunctional biotin operon repressor.
    Beckett D
    Methods Enzymol; 1998; 295():424-50. PubMed ID: 9750231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid phase separations and protein distribution in membranes.
    Kleemann W; Grant CW; McConnell HM
    J Supramol Struct; 1974; 2(5-6):609-16. PubMed ID: 4376824
    [No Abstract]   [Full Text] [Related]  

  • 19. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli.
    Kobayashi H; Kin E; Anraku Y
    J Biochem; 1974 Aug; 76(2):251-61. PubMed ID: 4154322
    [No Abstract]   [Full Text] [Related]  

  • 20. Interactions of the Escherichia coli DnaB helicase hexamer with the replication factor the DnaC protein. Effect of nucleotide cofactors and the ssDNA on protein-protein interactions and the topology of the complex.
    Galletto R; Jezewska MJ; Bujalowski W
    J Mol Biol; 2003 Jun; 329(3):441-65. PubMed ID: 12767828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.