These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 12537440)
61. The potential efficiency of irrigation management and propargyl bromide in controlling three soil pests: Tylenchulus semipenetrans, Fusarium oxysporum and Echinochloa crus-galli. Allaire SE; Yates SR; Zhang P; Ernst FF Pest Manag Sci; 2005 Aug; 61(8):799-808. PubMed ID: 15912563 [TBL] [Abstract][Full Text] [Related]
62. Adsorption and degradation of four acidic herbicides in soils from southern Spain. Villaverde J; Kah M; Brown CD Pest Manag Sci; 2008 Jul; 64(7):703-10. PubMed ID: 18283714 [TBL] [Abstract][Full Text] [Related]
63. Environmental fate of trifloxystrobin in soils of different geographical origins and photolytic degradation in water. Banerjee K; Ligon AP; Spiteller M J Agric Food Chem; 2006 Dec; 54(25):9479-87. PubMed ID: 17147436 [TBL] [Abstract][Full Text] [Related]
64. Reducing 1,3-dichloropropene emissions from soil columns amended with thiourea. Zheng W; Yates SR; Papiernik SK; Wang Q Environ Sci Technol; 2006 Apr; 40(7):2402-7. PubMed ID: 16646481 [TBL] [Abstract][Full Text] [Related]
65. Reactive films for mitigating methyl bromide emissions from fumigated soil. Xuan R; Ashworth DJ; Luo L; Yates SR Environ Sci Technol; 2011 Mar; 45(6):2317-22. PubMed ID: 21341689 [TBL] [Abstract][Full Text] [Related]
66. Water and methyl isothiocyanate distribution in soil after drip fumigation. Nelson SD; Ajwa HA; Trout T; Stromberger M; Yates SR; Sharma S J Environ Qual; 2013 Sep; 42(5):1555-64. PubMed ID: 24216433 [TBL] [Abstract][Full Text] [Related]
67. Understanding the Mobilization of a Nitrification Inhibitor from Novel Slow Release Pellets, Fabricated through Extrusion Processing with PHBV Biopolymer. Levett I; Pratt S; Donose BC; Brackin R; Pratt C; Redding M; Laycock B J Agric Food Chem; 2019 Mar; 67(9):2449-2458. PubMed ID: 30724561 [TBL] [Abstract][Full Text] [Related]
68. Control of Soilborne Pathogens of Zingiber officinale by Methyl Iodide and Chloropicrin in China. Li Y; Chi L; Mao L; Yan D; Wu Z; Ma T; Guo M; Wang Q; Ouyang C; Cao A Plant Dis; 2014 Mar; 98(3):384-388. PubMed ID: 30708449 [TBL] [Abstract][Full Text] [Related]
69. Impacts of the Ban on the Soil-Applied Fumigant Methyl Bromide. Rosskopf E; Gioia FD; Vincent I; Hong J; Zhao X Phytopathology; 2024 Jun; 114(6):1161-1175. PubMed ID: 38427594 [TBL] [Abstract][Full Text] [Related]
70. Oxidation of methyl halides by the facultative methylotroph strain IMB-1. Schaefer JK; Oremland RS Appl Environ Microbiol; 1999 Nov; 65(11):5035-41. PubMed ID: 10543820 [TBL] [Abstract][Full Text] [Related]
71. [Organic pollution of water and soil in the Khramtsovsky's state farm of the Sverdlovsk region]. Brodski? ES; Kliuev NA; Tumashov AA; Rusinov GL; Gurvich VB; Sokol?ikov EA; So?fer VS Gig Sanit; 1993 Jun; (6):22-6. PubMed ID: 8406076 [TBL] [Abstract][Full Text] [Related]
72. Chloropicrin emissions after shank injection: two-dimensional analytical and numerical model simulations of different source methods and field measurements. Wang D; Yates SR; Gao S J Environ Qual; 2011; 40(5):1443-9. PubMed ID: 21869506 [TBL] [Abstract][Full Text] [Related]
73. Data related uncertainty in near-surface vulnerability assessments for agrochemicals in the San Joaquin Valley. Loague K; Blanke JS; Mills MB; Diaz-Diaz R; Corwin DL J Environ Qual; 2012; 41(5):1427-36. PubMed ID: 23099933 [TBL] [Abstract][Full Text] [Related]
74. Atmospheric Methyl Bromide (CH3Br) from Agricultural Soil Fumigations. Yagi K; Williams J; Wang NY; Cicerone RJ Science; 1995 Mar; 267(5206):1979-81. PubMed ID: 17770112 [TBL] [Abstract][Full Text] [Related]
75. Comparison of field methyl isothiocyanate flux following Pacific Northwest surface-applied and ground-incorporated fumigation practices. Littke MH; LePage J; Sullivan DA; Hebert VR Pest Manag Sci; 2013 May; 69(5):620-6. PubMed ID: 23074019 [TBL] [Abstract][Full Text] [Related]
76. Nanocomposites for Delivering Agrochemicals: A Comprehensive Review. Guha T; Gopal G; Kundu R; Mukherjee A J Agric Food Chem; 2020 Mar; 68(12):3691-3702. PubMed ID: 32129992 [TBL] [Abstract][Full Text] [Related]
77. Enhanced degradation of the volatile fumigant-nematicides 1,3-d and methyl bromide in soil. Ou LT J Nematol; 1998 Mar; 30(1):56-64. PubMed ID: 19274199 [TBL] [Abstract][Full Text] [Related]
78. Agricultural soil fumigation as a source of atmospheric methyl bromide. Yagi K; Williams J; Wang NY; Cicerone RJ Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8420-3. PubMed ID: 11607425 [TBL] [Abstract][Full Text] [Related]
79. Impact of sporicidal fumigation with methyl bromide or methyl iodide on electronic equipment. Adrion AC; Scheffrahn RH; Serre S; Lee SD J Environ Manage; 2019 Feb; 231():1021-1027. PubMed ID: 30602226 [TBL] [Abstract][Full Text] [Related]
80. Effect of environmental conditions on the permeability of low density polyethylene film and totally impermeable film to methyl isothiocyanate fumigant. Fang W; Cao A; Yan D; Han D; Li J; Liu X; Li Y; Ouyang C; Wang Q Sci Total Environ; 2017 Dec; 599-600():1-8. PubMed ID: 28460289 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]