These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 12537490)
1. Relative reactivity of peracids versus dioxiranes (DMDO and TFDO) in the epoxidation of alkenes. A combined experimental and theoretical analysis. Bach RD; Dmitrenko O; Adam W; Schambony S J Am Chem Soc; 2003 Jan; 125(4):924-34. PubMed ID: 12537490 [TBL] [Abstract][Full Text] [Related]
2. Effect of geminal substitution on the strain energy of dioxiranes. Origin of the low ring strain of dimethyldioxirane. Bach RD; Dmitrenko O J Org Chem; 2002 May; 67(11):3884-96. PubMed ID: 12027708 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1. Stare J; Henson NJ; Eckert J J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473 [TBL] [Abstract][Full Text] [Related]
4. Partial oxidation of propylene to propylene oxide over a neutral gold trimer in the gas phase: a density functional theory study. Joshi AM; Delgass WN; Thomson KT J Phys Chem B; 2006 Feb; 110(6):2572-81. PubMed ID: 16471857 [TBL] [Abstract][Full Text] [Related]
5. Ring strain energy in the cyclooctyl system. The effect of strain energy on [3 + 2] cycloaddition reactions with azides. Bach RD J Am Chem Soc; 2009 Apr; 131(14):5233-43. PubMed ID: 19301865 [TBL] [Abstract][Full Text] [Related]
6. Strain energy of small ring hydrocarbons. Influence of C-h bond dissociation energies. Bach RD; Dmitrenko O J Am Chem Soc; 2004 Apr; 126(13):4444-52. PubMed ID: 15053635 [TBL] [Abstract][Full Text] [Related]
7. The effect of substitutents on the strain energies of small ring compounds. Bach RD; Dmitrenko O J Org Chem; 2002 Apr; 67(8):2588-99. PubMed ID: 11950305 [TBL] [Abstract][Full Text] [Related]
8. Novel pathways for oxygen insertion into unactivated C-H bonds by dioxiranes. Transition structures for stepwise routes via radical pairs and comparison with the concerted pathway. Freccero M; Gandolfi R; Sarzi-Amadè M; Rastelli A J Org Chem; 2003 Feb; 68(3):811-23. PubMed ID: 12558403 [TBL] [Abstract][Full Text] [Related]
9. Structure and reactivity of bis(silyl) dihydride complexes (PMe(3))(3)Ru(SiR(3))(2)(H)(2): model compounds and real intermediates in a dehydrogenative C-Si bond forming reaction. Dioumaev VK; Yoo BR; Procopio LJ; Carroll PJ; Berry DH J Am Chem Soc; 2003 Jul; 125(29):8936-48. PubMed ID: 12862491 [TBL] [Abstract][Full Text] [Related]
10. Reactivity of alkyl versus silyl peroxides. The consequences of 1, 2-silicon bridging on the epoxidation of alkenes with silyl hydroperoxides and bis(trialkylsilyl)peroxides. Estévez CM; Dmitrenko O; Winter JE; Bach RD J Org Chem; 2000 Dec; 65(25):8629-39. PubMed ID: 11112584 [TBL] [Abstract][Full Text] [Related]
11. Theoretical study of the Cp2Zr-catalyzed hydrosilylation of ethylene. Reaction mechanism including new sigma-bond activation. Sakaki S; Takayama T; Sumimoto M; Sugimoto M J Am Chem Soc; 2004 Mar; 126(10):3332-48. PubMed ID: 15012164 [TBL] [Abstract][Full Text] [Related]
12. Molecular orbital calculations of ring opening of the isoelectronic cyclopropylcarbinyl radical, cyclopropoxy radical, and cyclopropylaminium radical cation series of radical clocks. Cooksy AL; King HF; Richardson WH J Org Chem; 2003 Nov; 68(24):9441-52. PubMed ID: 14629170 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic aspects of the dehydration and dehydrohalogenation of halo-hydroxyformaldoxime conformers. A quantum chemical model study. Tsipis AC; Tsipis CA J Comput Chem; 2002 Oct; 23(13):1266-80. PubMed ID: 12210152 [TBL] [Abstract][Full Text] [Related]
14. Concerning the reactivity of dioxiranes. Observations from experiments and theory. Annese C; D'Accolti L; Dinoi A; Fusco C; Gandolfi R; Curci R J Am Chem Soc; 2008 Jan; 130(4):1197-204. PubMed ID: 18177039 [TBL] [Abstract][Full Text] [Related]
15. Preparation and reactivity of [D3d]-octahedrane: the most stable (CH)12 hydrocarbon. de Meijere A; Lee CH; Kuznetsov MA; Gusev DV; Kozhushkov SI; Fokin AA; Schreiner PR Chemistry; 2005 Oct; 11(21):6175-84. PubMed ID: 16075443 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic properties (enthalpy, bond energy, entropy, and heat capacity) and internal rotor potentials of vinyl alcohol, methyl vinyl ether, and their corresponding radicals. da Silva G; Kim CH; Bozzelli JW J Phys Chem A; 2006 Jun; 110(25):7925-34. PubMed ID: 16789782 [TBL] [Abstract][Full Text] [Related]
17. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction. Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619 [TBL] [Abstract][Full Text] [Related]
18. Single-site mutation and secondary structure stability: an isodesmic reaction approach. The case of unnatural amino acid mutagenesis Ala-->Lac. Cieplak AS; Sürmeli NB J Org Chem; 2004 May; 69(10):3250-61. PubMed ID: 15132529 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037 [TBL] [Abstract][Full Text] [Related]
20. Reaction pathways and free energy barriers for alkaline hydrolysis of insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds: electrostatic and steric effects. Xiong Y; Zhan CG J Org Chem; 2004 Nov; 69(24):8451-8. PubMed ID: 15549820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]