These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
692 related articles for article (PubMed ID: 12537504)
1. Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes. Kishishita S; Okajima T; Kim M; Yamaguchi H; Hirota S; Suzuki S; Kuroda S; Tanizawa K; Mure M J Am Chem Soc; 2003 Jan; 125(4):1041-55. PubMed ID: 12537504 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Wilce MC; Dooley DM; Freeman HC; Guss JM; Matsunami H; McIntire WS; Ruggiero CE; Tanizawa K; Yamaguchi H Biochemistry; 1997 Dec; 36(51):16116-33. PubMed ID: 9405045 [TBL] [Abstract][Full Text] [Related]
3. Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase. Chiu YC; Okajima T; Murakawa T; Uchida M; Taki M; Hirota S; Kim M; Yamaguchi H; Kawano Y; Kamiya N; Kuroda S; Hayashi H; Yamamoto Y; Tanizawa K Biochemistry; 2006 Apr; 45(13):4105-20. PubMed ID: 16566584 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic observation of intermediates formed during the oxidative half-reaction of copper/topa quinone-containing phenylethylamine oxidase. Hirota S; Iwamoto T; Kishishita S; Okajima T; Yamauchi O; Tanizawa K Biochemistry; 2001 Dec; 40(51):15789-96. PubMed ID: 11747456 [TBL] [Abstract][Full Text] [Related]
6. Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor. Matsunami H; Okajima T; Hirota S; Yamaguchi H; Hori H; Kuroda S; Tanizawa K Biochemistry; 2004 Mar; 43(8):2178-87. PubMed ID: 14979714 [TBL] [Abstract][Full Text] [Related]
7. Trapping of a dopaquinone intermediate in the TPQ cofactor biogenesis in a copper-containing amine oxidase from Arthrobacter globiformis. Moore RH; Spies MA; Culpepper MB; Murakawa T; Hirota S; Okajima T; Tanizawa K; Mure M J Am Chem Soc; 2007 Sep; 129(37):11524-34. PubMed ID: 17715921 [TBL] [Abstract][Full Text] [Related]
8. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism. Welford RW; Lam A; Mirica LM; Klinman JP Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423 [TBL] [Abstract][Full Text] [Related]
9. Further insight into the mechanism of stereoselective proton abstraction by bacterial copper amine oxidase. Taki M; Murakawa T; Nakamoto T; Uchida M; Hayashi H; Tanizawa K; Yamamoto Y; Okajima T Biochemistry; 2008 Jul; 47(29):7726-33. PubMed ID: 18627131 [TBL] [Abstract][Full Text] [Related]
10. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related]
11. Exploring a channel to the active site of copper/topaquinone-containing phenylethylamine oxidase by chemical modification and site-specific mutagenesis. Matsuzaki R; Tanizawa K Biochemistry; 1998 Oct; 37(40):13947-57. PubMed ID: 9760229 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic studies of topa quinone biogenesis in phenylethylamine oxidase. Ruggiero CE; Smith JA; Tanizawa K; Dooley DM Biochemistry; 1997 Feb; 36(8):1953-9. PubMed ID: 9047291 [TBL] [Abstract][Full Text] [Related]
13. An unexpected formation of the spectroscopic Cu(I)-semiquinone radical by xenon-induced self-catalysis of a copper quinoprotein. Medda R; Mura A; Longu S; Anedda R; Padiglia A; Casu M; Floris G Biochimie; 2006 Jul; 88(7):827-35. PubMed ID: 16519984 [TBL] [Abstract][Full Text] [Related]
14. 2,4,5-Trihydroxyphenylalanine quinone biogenesis in the copper amine oxidase from Hansenula polymorpha with the alternate metal nickel. Samuels NM; Klinman JP Biochemistry; 2005 Nov; 44(43):14308-17. PubMed ID: 16245947 [TBL] [Abstract][Full Text] [Related]
15. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha. DuBois JL; Klinman JP Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513 [TBL] [Abstract][Full Text] [Related]
16. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants. Murray JM; Saysell CG; Wilmot CM; Tambyrajah WS; Jaeger J; Knowles PF; Phillips SE; McPherson MJ Biochemistry; 1999 Jun; 38(26):8217-27. PubMed ID: 10387067 [TBL] [Abstract][Full Text] [Related]
17. Reinvestigation of metal ion specificity for quinone cofactor biogenesis in bacterial copper amine oxidase. Okajima T; Kishishita S; Chiu YC; Murakawa T; Kim M; Yamaguchi H; Hirota S; Kuroda S; Tanizawa K Biochemistry; 2005 Sep; 44(36):12041-8. PubMed ID: 16142901 [TBL] [Abstract][Full Text] [Related]
18. Intramolecular electron transfer rate between active-site copper and TPQ in Arthrobacter globiformis amine oxidase. Shepard EM; Dooley DM J Biol Inorg Chem; 2006 Nov; 11(8):1039-48. PubMed ID: 16924556 [TBL] [Abstract][Full Text] [Related]
19. Properties of copper-free pig kidney amine oxidase: role of topa quinone. Mura A; Padiglia A; Medda R; Pintus F; Finazzi Agrò A; Floris G FEBS Lett; 2006 Aug; 580(18):4317-24. PubMed ID: 16842785 [TBL] [Abstract][Full Text] [Related]
20. Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase. Hevel JM; Mills SA; Klinman JP Biochemistry; 1999 Mar; 38(12):3683-93. PubMed ID: 10090756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]