BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

698 related articles for article (PubMed ID: 12537504)

  • 21. Relationship of stopped flow to steady state parameters in the dimeric copper amine oxidase from Hansenula polymorpha and the role of zinc in inhibiting activity at alternate copper-containing subunits.
    Takahashi K; Klinman JP
    Biochemistry; 2006 Apr; 45(14):4683-94. PubMed ID: 16584203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The nature of O2 reactivity leading to topa quinone in the copper amine oxidase from Hansenula polymorpha and its relationship to catalytic turnover.
    DuBois JL; Klinman JP
    Biochemistry; 2005 Aug; 44(34):11381-8. PubMed ID: 16114875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase.
    Kim M; Okajima T; Kishishita S; Yoshimura M; Kawamori A; Tanizawa K; Yamaguchi H
    Nat Struct Biol; 2002 Aug; 9(8):591-6. PubMed ID: 12134140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold electrodes wired for coupling with the deeply buried active site of Arthrobacter globiformis amine oxidase.
    Hess CR; Juda GA; Dooley DM; Amii RN; Hill MG; Winkler JR; Gray HB
    J Am Chem Soc; 2003 Jun; 125(24):7156-7. PubMed ID: 12797771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural insights into the substrate specificity of bacterial copper amine oxidase obtained by using irreversible inhibitors.
    Murakawa T; Hayashi H; Taki M; Yamamoto Y; Kawano Y; Tanizawa K; Okajima T
    J Biochem; 2012 Feb; 151(2):167-78. PubMed ID: 21984603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and enzyme activity studies demonstrate that aryl substituted 2,3-butadienamine analogs inactivate Arthrobacter globiformis amine oxidase (AGAO) by chemical derivatization of the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor.
    Ernberg K; Zhong B; Ko K; Miller L; Nguyen YH; Sayre LM; Guss JM; Lee I
    Biochim Biophys Acta; 2011 May; 1814(5):638-46. PubMed ID: 21215824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topaquinone-dependent amine oxidases: identification of reaction intermediates by Raman spectroscopy.
    Nakamura N; Moënne-Loccoz P; Tanizawa K; Mure M; Suzuki S; Klinman JP; Sanders-Loehr J
    Biochemistry; 1997 Sep; 36(38):11479-86. PubMed ID: 9298968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of the reaction intermediates catalyzed by a copper amine oxidase.
    Kataoka M; Oya H; Tominaga A; Otsu M; Okajima T; Tanizawa K; Yamaguchi H
    J Synchrotron Radiat; 2011 Jan; 18(1):58-61. PubMed ID: 21169693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conserved tyrosine-369 in the active site of Escherichia coli copper amine oxidase is not essential.
    Murray JM; Kurtis CR; Tambyrajah W; Saysell CG; Wilmot CM; Parsons MR; Phillips SE; Knowles PF; McPherson MJ
    Biochemistry; 2001 Oct; 40(43):12808-18. PubMed ID: 11669617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stoichiometry of the topa quinone biogenesis reaction in copper amine oxidases.
    Ruggiero CE; Dooley DM
    Biochemistry; 1999 Mar; 38(10):2892-8. PubMed ID: 10074341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha.
    Plastino J; Green EL; Sanders-Loehr J; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8204-16. PubMed ID: 10387066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Divalent metal derivatives of the hamster dihydroorotase domain.
    Huang DT; Thomas MA; Christopherson RI
    Biochemistry; 1999 Aug; 38(31):9964-70. PubMed ID: 10433703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics and spectroscopic evidence that the Cu(I)-semiquinone intermediate reduces molecular oxygen in the oxidative half-reaction of Arthrobacter globiformis amine oxidase.
    Shepard EM; Okonski KM; Dooley DM
    Biochemistry; 2008 Dec; 47(52):13907-20. PubMed ID: 19053231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition and oxygen activation in copper amine oxidases.
    Shepard EM; Dooley DM
    Acc Chem Res; 2015 May; 48(5):1218-26. PubMed ID: 25897668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyanide as a copper and quinone-directed inhibitor of amine oxidases from pea seedlings ( Pisum sativum) and Arthrobacter globiformis: evidence for both copper coordination and cyanohydrin derivatization of the quinone cofactor.
    Shepard EM; Juda GA; Ling KQ; Sayre LM; Dooley DM
    J Biol Inorg Chem; 2004 Apr; 9(3):256-68. PubMed ID: 14986071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the Catalytic Mechanism of Copper Amine Oxidase from Arthrobacter globiformis with Halide Ions.
    Murakawa T; Hamaguchi A; Nakanishi S; Kataoka M; Nakai T; Kawano Y; Yamaguchi H; Hayashi H; Tanizawa K; Okajima T
    J Biol Chem; 2015 Sep; 290(38):23094-109. PubMed ID: 26269595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active site rearrangement of the 2-hydrazinopyridine adduct in Escherichia coli amine oxidase to an azo copper(II) chelate form: a key role for tyrosine 369 in controlling the mobility of the TPQ-2HP adduct.
    Mure M; Kurtis CR; Brown DE; Rogers MS; Tambyrajah WS; Saysell C; Wilmot CM; Phillips SE; Knowles PF; Dooley DM; McPherson MJ
    Biochemistry; 2005 Feb; 44(5):1583-94. PubMed ID: 15683242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism-based cofactor derivatization of a copper amine oxidase by a branched primary amine recruits the oxidase activity of the enzyme to turn inactivator into substrate.
    Qiao C; Ling KQ; Shepard EM; Dooley DM; Sayre LM
    J Am Chem Soc; 2006 May; 128(18):6206-19. PubMed ID: 16669691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the Preprocessed Copper Site Equilibrium in Amine Oxidase and Assignment of the Reactive Copper Site in Topaquinone Biogenesis.
    Adelson CN; Johnston EM; Hilmer KM; Watts H; Dey SG; Brown DE; Broderick JB; Shepard EM; Dooley DM; Solomon EI
    J Am Chem Soc; 2019 Jun; 141(22):8877-8890. PubMed ID: 31060358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction.
    Wilmot CM; Murray JM; Alton G; Parsons MR; Convery MA; Blakeley V; Corner AS; Palcic MM; Knowles PF; McPherson MJ; Phillips SE
    Biochemistry; 1997 Feb; 36(7):1608-20. PubMed ID: 9048544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.