These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12537505)

  • 1. Molecular quantum-dot cellular automata.
    Lent CS; Isaksen B; Lieberman M
    J Am Chem Soc; 2003 Jan; 125(4):1056-63. PubMed ID: 12537505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning tunneling microscopy and spectroscopy investigations of QCA molecules.
    Manimaran M; Snider GL; Lent CS; Sarveswaran V; Lieberman M; Li Z; Fehlner TP
    Ultramicroscopy; 2003; 97(1-4):55-63. PubMed ID: 12801657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A metric for characterizing the bistability of molecular quantum-dot cellular automata.
    Lu Y; Lent CS
    Nanotechnology; 2008 Apr; 19(15):155703. PubMed ID: 21825627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-doping of molecular quantum-dot cellular automata: mixed valence zwitterions.
    Lu Y; Lent C
    Phys Chem Chem Phys; 2011 Sep; 13(33):14928-36. PubMed ID: 21755091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopatterned graphene quantum dots as building blocks for quantum cellular automata.
    Wang ZF; Liu F
    Nanoscale; 2011 Oct; 3(10):4201-5. PubMed ID: 21869996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata.
    Qi H; Sharma S; Li Z; Snider GL; Orlov AO; Lent CS; Fehlner TP
    J Am Chem Soc; 2003 Dec; 125(49):15250-9. PubMed ID: 14653760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a Au surface by an organic linker.
    Li Z; Fehlner TP
    Inorg Chem; 2003 Sep; 42(18):5715-21. PubMed ID: 12950222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal transmission through molecular quantum-dot cellular automata: a theoretical study on Creutz-Taube complexes for molecular computing.
    Tokunaga K
    Phys Chem Chem Phys; 2009 Mar; 11(10):1474-83. PubMed ID: 19240923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding.
    Li Z; Beatty AM; Fehlner TP
    Inorg Chem; 2003 Sep; 42(18):5707-14. PubMed ID: 12950221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric, mixed-valence molecules for spectroscopic readout of quantum-dot cellular automata.
    Liza N; Murphey D; Cong P; Beggs DW; Lu Y; Blair EP
    Nanotechnology; 2021 Dec; 33(11):. PubMed ID: 34875643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling.
    Lent CS; Liu M; Lu Y
    Nanotechnology; 2006 Aug; 17(16):4240-51. PubMed ID: 21727566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response.
    Tsukerblat B; Palii A; Clemente-Juan JM; Coronado E
    J Chem Phys; 2015 Oct; 143(13):134307. PubMed ID: 26450314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron switch in the double-cage fluorinated fullerene anions, e(-)@C20F18(XH)2C20F18 (X = N, B): new candidates for molecular quantum-dot cellular automata.
    Wang X; Ma J
    Phys Chem Chem Phys; 2011 Sep; 13(36):16134-7. PubMed ID: 21833417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing boron-cluster-centered zwitterionic Y-shaped clocked QCA molecules.
    Liza N; Lu Y; Blair EP
    Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35944440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Quantum-dot Cellular Automata units: thiolated-carbazole linked bisferrocenes.
    Arima V; Iurlo M; Zoli L; Kumar S; Piacenza M; Della Sala F; Matino F; Maruccio G; Rinaldi R; Paolucci F; Marcaccio M; Cozzi PG; Bramanti AP
    Nanoscale; 2012 Feb; 4(3):813-23. PubMed ID: 22159165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio studies of counterion effects in molecular quantum-dot cellular automata.
    Liza N; Coe DJ; Lu Y; Blair EP
    J Comput Chem; 2024 Mar; 45(7):392-404. PubMed ID: 38014502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates.
    Rahimi E; Nejad SM
    Nanoscale Res Lett; 2012 May; 7(1):274. PubMed ID: 22647345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonadiabatic electron wavepacket dynamics of molecules in an intense optical field: an ab initio electronic state study.
    Yonehara T; Takatsuka K
    J Chem Phys; 2008 Apr; 128(15):154104. PubMed ID: 18433187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible Quantum-Dot Cellular Automata-Based Arithmetic Logic Unit.
    Alharbi M; Edwards G; Stocker R
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural distortions in molecular-based quantum cellular automata: a minimal model based study.
    Bonilla AS; Gutierrez R; Sandonas LM; Nozaki D; Bramanti AP; Cuniberti G
    Phys Chem Chem Phys; 2014 Sep; 16(33):17777-85. PubMed ID: 25030423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.