These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 12538244)

  • 1. A naive Bayes model to predict coupling between seven transmembrane domain receptors and G-proteins.
    Cao J; Panetta R; Yue S; Steyaert A; Young-Bellido M; Ahmad S
    Bioinformatics; 2003 Jan; 19(2):234-40. PubMed ID: 12538244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile Hidden Markov Models.
    Sgourakis NG; Bagos PG; Papasaikas PK; Hamodrakas SJ
    BMC Bioinformatics; 2005 Apr; 6():104. PubMed ID: 15847681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting GPCR-G-protein coupling using hidden Markov models.
    Sreekumar KR; Huang Y; Pausch MH; Gulukota K
    Bioinformatics; 2004 Dec; 20(18):3490-9. PubMed ID: 15297294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPCR-GRAPA-LIB--a refined library of hidden Markov Models for annotating GPCRs.
    Shigeta R; Cline M; Liu G; Siani-Rose MA
    Bioinformatics; 2003 Mar; 19(5):667-8. PubMed ID: 12651732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical analysis and prediction of functional residues effective for GPCR-G-protein coupling selectivity.
    Muramatsu T; Suwa M
    Protein Eng Des Sel; 2006 Jun; 19(6):277-83. PubMed ID: 16565146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. gpDB: a database of GPCRs, G-proteins, effectors and their interactions.
    Theodoropoulou MC; Bagos PG; Spyropoulos IC; Hamodrakas SJ
    Bioinformatics; 2008 Jun; 24(12):1471-2. PubMed ID: 18441001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProClust: improved clustering of protein sequences with an extended graph-based approach.
    Pipenbacher P; Schliep A; Schneckener S; Schönhuth A; Schomburg D; Schrader R
    Bioinformatics; 2002; 18 Suppl 2():S182-91. PubMed ID: 12386002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of G proteins and prediction of GPCRs-G proteins coupling specificity using continuous wavelet transform and information theory.
    Li Z; Zhou X; Dai Z; Zou X
    Amino Acids; 2012 Aug; 43(2):793-804. PubMed ID: 22086210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the coupling specificity of G protein coupled receptors to their G proteins.
    Möller S; Vilo J; Croning MD
    Bioinformatics; 2001; 17 Suppl 1():S174-81. PubMed ID: 11473007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PRECOG: PREdicting COupling probabilities of G-protein coupled receptors.
    Singh G; Inoue A; Gutkind JS; Russell RB; Raimondi F
    Nucleic Acids Res; 2019 Jul; 47(W1):W395-W401. PubMed ID: 31143927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the coupling specificity of GPCRs to G-proteins by support vector machines.
    Guan CP; Jiang ZR; Zhou YH
    Genomics Proteomics Bioinformatics; 2005 Nov; 3(4):247-51. PubMed ID: 16689694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications.
    Cvicek V; Goddard WA; Abrol R
    PLoS Comput Biol; 2016 Mar; 12(3):e1004805. PubMed ID: 27028541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting G-protein coupled receptors-G-protein coupling specificity based on autocross-covariance transform.
    Guo Y; Li M; Lu M; Wen Z; Huang Z
    Proteins; 2006 Oct; 65(1):55-60. PubMed ID: 16865706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated generation and refinement of protein signatures: case study with G-protein coupled receptors.
    Sadowski MI; Parish JH
    Bioinformatics; 2003 Apr; 19(6):727-34. PubMed ID: 12691984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of G-protein coupled receptors by alignment-independent extraction of principal chemical properties of primary amino acid sequences.
    Lapinsh M; Gutcaits A; Prusis P; Post C; Lundstedt T; Wikberg JE
    Protein Sci; 2002 Apr; 11(4):795-805. PubMed ID: 11910023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast fourier transform-based support vector machine for prediction of G-protein coupled receptor subfamilies.
    Guo YZ; Li ML; Wang KL; Wen ZN; Lu MC; Liu LX; Jiang L
    Acta Biochim Biophys Sin (Shanghai); 2005 Nov; 37(11):759-66. PubMed ID: 16270155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction of the coupling specificity of g protein-coupled receptors.
    Jiang Z; Guan C; Zhou Y
    Appl Biochem Biotechnol; 2007 Apr; 141(1):109-18. PubMed ID: 17625269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic prediction of protein domains from sequence information using a hybrid learning system.
    Nagarajan N; Yona G
    Bioinformatics; 2004 Jun; 20(9):1335-60. PubMed ID: 14962932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of functional specificity determinants from protein sequences using log-likelihood ratios.
    Pei J; Cai W; Kinch LN; Grishin NV
    Bioinformatics; 2006 Jan; 22(2):164-71. PubMed ID: 16278237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.