BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12538585)

  • 1. Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide.
    Majumdar A; Puri N; Cuenoud B; Natt F; Martin P; Khorlin A; Dyatkina N; George AJ; Miller PS; Seidman MM
    J Biol Chem; 2003 Mar; 278(13):11072-7. PubMed ID: 12538585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted gene knockout mediated by triple helix forming oligonucleotides.
    Majumdar A; Khorlin A; Dyatkina N; Lin FL; Powell J; Liu J; Fei Z; Khripine Y; Watanabe KA; George J; Glazer PM; Seidman MM
    Nat Genet; 1998 Oct; 20(2):212-4. PubMed ID: 9771719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene targeting by triple helix-forming oligonucleotides.
    Majumdar A; Puri N; McCollum N; Richards S; Cuenoud B; Miller P; Seidman MM
    Ann N Y Acad Sci; 2003 Dec; 1002():141-53. PubMed ID: 14751832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimum number of 2'-O-(2-aminoethyl) residues required for gene knockout activity by triple helix forming oligonucleotides.
    Puri N; Majumdar A; Cuenoud B; Natt F; Martin P; Boyd A; Miller PS; Seidman MM
    Biochemistry; 2002 Jun; 41(24):7716-24. PubMed ID: 12056903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of clustered 2'-O-(2-aminoethyl) residues for the gene targeting activity of triple helix-forming oligonucleotides.
    Puri N; Majumdar A; Cuenoud B; Miller PS; Seidman MM
    Biochemistry; 2004 Feb; 43(5):1343-51. PubMed ID: 14756571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement and inhibition by 2'-O-hydroxyethyl residues of gene targeting mediated by triple helix forming oligonucleotides.
    Kundu M; Nagatsugi F; Majumdar A; Miller PS; Seidman MM
    Nucleosides Nucleotides Nucleic Acids; 2003 Oct; 22(10):1927-38. PubMed ID: 14609232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted gene knockout by 2'-O-aminoethyl modified triplex forming oligonucleotides.
    Puri N; Majumdar A; Cuenoud B; Natt F; Martin P; Boyd A; Miller PS; Seidman MM
    J Biol Chem; 2001 Aug; 276(31):28991-8. PubMed ID: 11389147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted cross-linking of the human beta-globin gene in living cells mediated by a triple helix forming oligonucleotide.
    Shahid KA; Majumdar A; Alam R; Liu ST; Kuan JY; Sui X; Cuenoud B; Glazer PM; Miller PS; Seidman MM
    Biochemistry; 2006 Feb; 45(6):1970-8. PubMed ID: 16460044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A triple-helix forming oligonucleotide targeting genomic DNA fails to induce mutation.
    Reshat R; Priestley CC; Gooderham NJ
    Mutagenesis; 2012 Nov; 27(6):713-9. PubMed ID: 22914677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triplex targeted genomic crosslinks enter separable deletion and base substitution pathways.
    Richards S; Liu ST; Majumdar A; Liu JL; Nairn RS; Bernier M; Maher V; Seidman MM
    Nucleic Acids Res; 2005; 33(17):5382-93. PubMed ID: 16186129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and application of triple helix forming oligonucleotides and single strand oligonucleotide donors for gene correction.
    Alam R; Thazhathveetil AK; Li H; Seidman MM
    Methods Mol Biol; 2014; 1114():103-13. PubMed ID: 24557899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted gene knock in and sequence modulation mediated by a psoralen-linked triplex-forming oligonucleotide.
    Majumdar A; Muniandy PA; Liu J; Liu JL; Liu ST; Cuenoud B; Seidman MM
    J Biol Chem; 2008 Apr; 283(17):11244-52. PubMed ID: 18303025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive sugar modification improves triple helix forming oligonucleotide activity in vitro but reduces activity in vivo.
    Alam MR; Majumdar A; Thazhathveetil AK; Liu ST; Liu JL; Puri N; Cuenoud B; Sasaki S; Miller PS; Seidman MM
    Biochemistry; 2007 Sep; 46(35):10222-33. PubMed ID: 17691818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency triple-helix-mediated photo-cross-linking at a targeted site within a selectable mammalian gene.
    Vasquez KM; Wensel TG; Hogan ME; Wilson JH
    Biochemistry; 1996 Aug; 35(33):10712-9. PubMed ID: 8718860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted mutagenesis of simian virus 40 DNA mediated by a triple helix-forming oligonucleotide.
    Havre PA; Glazer PM
    J Virol; 1993 Dec; 67(12):7324-31. PubMed ID: 8230456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-affinity triple helix formation by synthetic oligonucleotides at a site within a selectable mammalian gene.
    Vasquez KM; Wensel TG; Hogan ME; Wilson JH
    Biochemistry; 1995 May; 34(21):7243-51. PubMed ID: 7766635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene targeting via triple-helix formation.
    Casey BP; Glazer PM
    Prog Nucleic Acid Res Mol Biol; 2001; 67():163-92. PubMed ID: 11525382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triplex-induced recombination and repair in the pyrimidine motif.
    Kalish JM; Seidman MM; Weeks DL; Glazer PM
    Nucleic Acids Res; 2005; 33(11):3492-502. PubMed ID: 15961731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides.
    Rogers FA; Manoharan M; Rabinovitch P; Ward DC; Glazer PM
    Nucleic Acids Res; 2004; 32(22):6595-604. PubMed ID: 15602001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed gene mutation at mixed sequence targets by psoralen-conjugated pseudo-complementary peptide nucleic acids.
    Kim KH; Nielsen PE; Glazer PM
    Nucleic Acids Res; 2007; 35(22):7604-13. PubMed ID: 17977869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.