These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12538596)

  • 1. Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus.
    Wang P; Wu Y; Ge X; Ma L; Pei G
    J Biol Chem; 2003 Mar; 278(13):11648-53. PubMed ID: 12538596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intact MDM2 E3 ligase activity is required for the cytosolic localization and function of β-arrestin2.
    Yin C; Zhang R; Xu Y; Chen Q; Xie X
    Mol Biol Cell; 2011 May; 22(9):1608-16. PubMed ID: 21389118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2.
    Scott MG; Le Rouzic E; Périanin A; Pierotti V; Enslen H; Benichou S; Marullo S; Benmerah A
    J Biol Chem; 2002 Oct; 277(40):37693-701. PubMed ID: 12167659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3.
    Miller WE; McDonald PH; Cai SF; Field ME; Davis RJ; Lefkowitz RJ
    J Biol Chem; 2001 Jul; 276(30):27770-7. PubMed ID: 11356842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors.
    Zhang X; Wang F; Chen X; Li J; Xiang B; Zhang YQ; Li BM; Ma L
    J Neurochem; 2005 Oct; 95(1):169-78. PubMed ID: 16181421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual and both non-visual arrestins in their "inactive" conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm.
    Song X; Raman D; Gurevich EV; Vishnivetskiy SA; Gurevich VV
    J Biol Chem; 2006 Jul; 281(30):21491-21499. PubMed ID: 16737965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interaction of the Ras effector RASSF5 with the tyrosine kinase Lck: critical role in nucleocytoplasmic transport and cell cycle regulation.
    Kumari G; Singhal PK; Suryaraja R; Mahalingam S
    J Mol Biol; 2010 Mar; 397(1):89-109. PubMed ID: 20064523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2.
    Nobles KN; Guan Z; Xiao K; Oas TG; Lefkowitz RJ
    J Biol Chem; 2007 Jul; 282(29):21370-81. PubMed ID: 17513300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family.
    Attramadal H; Arriza JL; Aoki C; Dawson TM; Codina J; Kwatra MM; Snyder SH; Caron MG; Lefkowitz RJ
    J Biol Chem; 1992 Sep; 267(25):17882-90. PubMed ID: 1517224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of beta-arrestin2 on cannabinoid CB1 receptor coupling to G-proteins and subcellular localization and relative levels of beta-arrestin1 and 2 in mouse brain.
    Breivogel CS; Puri V; Lambert JM; Hill DK; Huffman JW; Razdan RK
    J Recept Signal Transduct Res; 2013 Dec; 33(6):367-79. PubMed ID: 24094141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different conformational dynamics of β-arrestin1 and β-arrestin2 analyzed by hydrogen/deuterium exchange mass spectrometry.
    Yun Y; Kim DK; Seo MD; Kim KM; Chung KY
    Biochem Biophys Res Commun; 2015 Jan; 457(1):50-7. PubMed ID: 25542150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPCR targeting of E3 ubiquitin ligase MDM2 by inactive β-arrestin.
    Yun Y; Yoon HJ; Jeong Y; Choi Y; Jang S; Chung KY; Lee HH
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2301934120. PubMed ID: 37399373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CK2 phosphorylation of an acidic Ser/Thr di-isoleucine motif in the Na+/H+ exchanger NHE5 isoform promotes association with beta-arrestin2 and endocytosis.
    Lukashova V; Szabó EZ; Jinadasa T; Mokhov A; Litchfield DW; Orlowski J
    J Biol Chem; 2011 Apr; 286(13):11456-68. PubMed ID: 21296876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-terminal tyrosine modulation of the endocytic adaptor function of the beta-arrestins.
    Marion S; Fralish GB; Laporte S; Caron MG; Barak LS
    J Biol Chem; 2007 Jun; 282(26):18937-44. PubMed ID: 17456469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. beta-Arrestins bind and decrease cell-surface abundance of the Na+/H+ exchanger NHE5 isoform.
    Szabó EZ; Numata M; Lukashova V; Iannuzzi P; Orlowski J
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):2790-5. PubMed ID: 15699339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depletion of β-arrestin2 in hepatic stellate cells reduces cell proliferation via ERK pathway.
    Sun WY; Song Y; Hu SS; Wang QT; Wu HX; Chen JY; Wei W
    J Cell Biochem; 2013 May; 114(5):1153-62. PubMed ID: 23192415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-arrestins regulate atherosclerosis and neointimal hyperplasia by controlling smooth muscle cell proliferation and migration.
    Kim J; Zhang L; Peppel K; Wu JH; Zidar DA; Brian L; DeWire SM; Exum ST; Lefkowitz RJ; Freedman NJ
    Circ Res; 2008 Jul; 103(1):70-9. PubMed ID: 18519945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opposing effects of beta-arrestin1 and beta-arrestin2 on activation and degradation of Src induced by protease-activated receptor 1.
    Kuo FT; Lu TL; Fu HW
    Cell Signal; 2006 Nov; 18(11):1914-23. PubMed ID: 16580177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods to Investigate the Nucleocytoplasmic Shuttling Properties of β-Arrestins.
    Blondel-Tepaz E; Guilbert T; Scott MGH
    Methods Mol Biol; 2019; 1957():251-269. PubMed ID: 30919359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of beta-arrestin2 regulates its function in internalization of beta(2)-adrenergic receptors.
    Lin FT; Chen W; Shenoy S; Cong M; Exum ST; Lefkowitz RJ
    Biochemistry; 2002 Aug; 41(34):10692-9. PubMed ID: 12186555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.