BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12538889)

  • 1. Stabilization of a pH-sensitive apoptosis-linked coiled coil through single point mutations.
    Dutta K; Engler FA; Cotton L; Alexandrov A; Bedi GS; Colquhoun J; Pascal SM
    Protein Sci; 2003 Feb; 12(2):257-65. PubMed ID: 12538889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-induced folding of an apoptotic coiled coil.
    Dutta K; Alexandrov A; Huang H; Pascal SM
    Protein Sci; 2001 Dec; 10(12):2531-40. PubMed ID: 11714921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper.
    Kohn WD; Kay CM; Hodges RS
    Protein Sci; 1995 Feb; 4(2):237-50. PubMed ID: 7757012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic analysis of cavity creating mutations in an engineered leucine zipper and energetics of glycerol-induced coiled coil stabilization.
    Dürr E; Jelesarov I
    Biochemistry; 2000 Apr; 39(15):4472-82. PubMed ID: 10757996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper.
    Marti DN; Bosshard HR
    Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation, positional, additivity, and oligomerization-state effects of interhelical ion pairs in alpha-helical coiled-coils.
    Kohn WD; Kay CM; Hodges RS
    J Mol Biol; 1998 Nov; 283(5):993-1012. PubMed ID: 9799639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of electrostatic interactions in two-stranded coiled-coils through residue shuffling.
    Yu Y; Monera OD; Hodges RS; Privalov PL
    Biophys Chem; 1996 Apr; 59(3):299-314. PubMed ID: 8672718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremely fast folding of a very stable leucine zipper with a strengthened hydrophobic core and lacking electrostatic interactions between helices.
    Dürr E; Jelesarov I; Bosshard HR
    Biochemistry; 1999 Jan; 38(3):870-80. PubMed ID: 9893981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interhelical ion pairing in coiled coils: solution structure of a heterodimeric leucine zipper and determination of pKa values of Glu side chains.
    Marti DN; Jelesarov I; Bosshard HR
    Biochemistry; 2000 Oct; 39(42):12804-18. PubMed ID: 11041845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).
    Jelesarov I; Dürr E; Thomas RM; Bosshard HR
    Biochemistry; 1998 May; 37(20):7539-50. PubMed ID: 9585569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are trigger sequences essential in the folding of two-stranded alpha-helical coiled-coils?
    Lee DL; Lavigne P; Hodges RS
    J Mol Biol; 2001 Feb; 306(3):539-53. PubMed ID: 11178912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The net energetic contribution of interhelical electrostatic attractions to coiled-coil stability.
    Zhou NE; Kay CM; Hodges RS
    Protein Eng; 1994 Nov; 7(11):1365-72. PubMed ID: 7700868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics of coiled coil folding: the nature of the transition states.
    Bosshard HR; Dürr E; Hitz T; Jelesarov I
    Biochemistry; 2001 Mar; 40(12):3544-52. PubMed ID: 11297420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of interhelical ionic interactions in controlling protein folding and stability. De novo designed synthetic two-stranded alpha-helical coiled-coils.
    Zhou NE; Kay CM; Hodges RS
    J Mol Biol; 1994 Apr; 237(4):500-12. PubMed ID: 8151708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Induced Folding of the Caspase-Cleaved Par-4 Tumor Suppressor: Evidence of Structure Outside of the Coiled Coil Domain.
    Clark AM; Ponniah K; Warden MS; Raitt EM; Yawn AC; Pascal SM
    Biomolecules; 2018 Dec; 8(4):. PubMed ID: 30518159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidic pH triggers conformational changes at the NH2-terminal propeptide of the precursor of pulmonary surfactant protein B to form a coiled coil structure.
    Bañares-Hidalgo A; Pérez-Gil J; Estrada P
    Biochim Biophys Acta; 2014 Jul; 1838(7):1738-51. PubMed ID: 24704177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the energy surface for the folding reaction of the coiled-coil peptide GCN4-p1.
    Ibarra-Molero B; Makhatadze GI; Matthews CR
    Biochemistry; 2001 Jan; 40(3):719-31. PubMed ID: 11170389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion pairs significantly stabilize coiled-coils in the absence of electrolyte.
    Yu Y; Monera OD; Hodges RS; Privalov PL
    J Mol Biol; 1996 Jan; 255(3):367-72. PubMed ID: 8568882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix.
    Kaplan AR; Brady MR; Maciejewski MW; Kammerer RA; Alexandrescu AT
    Biochemistry; 2017 Mar; 56(11):1604-1619. PubMed ID: 28230348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.