These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12539158)

  • 1. Active dendritic properties constrain input-output relationships in neurons of the central olfactory pathway in the crayfish forebrain.
    Mellon D
    Microsc Res Tech; 2003 Feb; 60(3):278-90. PubMed ID: 12539158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendritic initiation and propagation of spikes and spike bursts in a multimodal sensory interneuron: the crustacean parasol cell.
    Mellon D
    J Neurophysiol; 2003 Oct; 90(4):2465-77. PubMed ID: 12789014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical responses and synaptic connections of giant serotonin-immunoreactive neurons in crayfish olfactory and accessory lobes.
    Sandeman DC; Sandeman RE
    J Comp Neurol; 1994 Mar; 341(1):130-44. PubMed ID: 8006219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parasol cells of the hemiellipsoid body in the crayfish Procambarus clarkii: dendritic branching patterns and functional implications.
    McKinzie ME; Benton JL; Beltz BS; Mellon D
    J Comp Neurol; 2003 Jul; 462(2):168-79. PubMed ID: 12794741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional specialization in synaptic input and output in an identified local nonspiking interneuron of the crayfish revealed by light and electron microscopy.
    Kondoh Y; Hisada M
    J Comp Neurol; 1986 Sep; 251(3):334-48. PubMed ID: 3771834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional significance of passive and active dendritic properties in the synaptic integration by an identified nonspiking interneuron of crayfish.
    Takashima A; Hikosaka R; Takahata M
    J Neurophysiol; 2006 Dec; 96(6):3157-69. PubMed ID: 16914611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The olfactory pathway of decapod crustaceans--an invertebrate model for life-long neurogenesis.
    Schmidt M
    Chem Senses; 2007 May; 32(4):365-84. PubMed ID: 17404151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration and segregation of inputs to higher-order neuropils of the crayfish brain.
    Sullivan JM; Beltz BS
    J Comp Neurol; 2005 Jan; 481(1):118-26. PubMed ID: 15558720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure of the circuit providing input to the crayfish lateral giant neurons.
    Lee SC; Krasne FB
    J Comp Neurol; 1993 Jan; 327(2):271-88. PubMed ID: 8425945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergence of multimodal sensory input onto higher-level neurons of the crayfish olfactory pathway.
    Mellon D
    J Neurophysiol; 2000 Dec; 84(6):3043-55. PubMed ID: 11110831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crayfish brain interneurons that converge with serotonin giant cells in accessory lobe glomeruli.
    Sandeman D; Beltz B; Sandeman R
    J Comp Neurol; 1995 Feb; 352(2):263-79. PubMed ID: 7721994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interneurons of the crayfish brain: the relationship between dendrite location and afferent input.
    Glantz RM; Kirk M; Viancour T
    J Neurobiol; 1981 Jul; 12(4):311-28. PubMed ID: 7252483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomy and fine structure of neurons in the deutocerebral projection pathway of the crayfish olfactory system.
    Mellon D; Alones V; Lawrence MD
    J Comp Neurol; 1992 Jul; 321(1):93-111. PubMed ID: 1377206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disynaptic and polysynaptic statocyst pathways to an identified set of premotor nonspiking interneurons in the crayfish brain.
    Fujisawa K; Takahata M
    J Comp Neurol; 2007 Aug; 503(4):560-72. PubMed ID: 17534936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent oscillations in membrane potential synchronize impulse bursts in central olfactory neurons of the crayfish.
    Mellon D; Wheeler CJ
    J Neurophysiol; 1999 Mar; 81(3):1231-41. PubMed ID: 10085350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons.
    Takahashi H; Magee JC
    Neuron; 2009 Apr; 62(1):102-11. PubMed ID: 19376070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABAergic inhibition in the neostriatum.
    Wilson CJ
    Prog Brain Res; 2007; 160():91-110. PubMed ID: 17499110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitatory inputs to CA1 interneurons show selective synaptic dynamics.
    Wierenga CJ; Wadman WJ
    J Neurophysiol; 2003 Aug; 90(2):811-21. PubMed ID: 12904494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular basis of neurogenesis in the brain of crayfish, Procambarus clarkii: Neurogenic complex in the olfactory midbrain from hatchlings to adults.
    Song CK; Johnstone LM; Edwards DH; Derby CD; Schmidt M
    Arthropod Struct Dev; 2009 Jul; 38(4):339-60. PubMed ID: 19185059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamma-frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory Bulb.
    Halabisky B; Strowbridge BW
    J Neurophysiol; 2003 Aug; 90(2):644-54. PubMed ID: 12711716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.