These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12539740)

  • 1. Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana.
    Vanhoutte KJ; Eggen BJ; Janssen JJ; Stavenga DG
    Insect Biochem Mol Biol; 2002 Nov; 32(11):1383-90. PubMed ID: 12539740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet and violet receptors express identical mRNA encoding an ultraviolet-absorbing opsin: identification and histological localization of two mRNAs encoding short-wavelength-absorbing opsins in the retina of the butterfly Papilio xuthus.
    Kitamoto J; Ozaki K; Arikawa K
    J Exp Biol; 2000 Oct; 203(Pt 19):2887-94. PubMed ID: 10976026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects.
    Briscoe AD
    J Mol Evol; 2000 Aug; 51(2):110-21. PubMed ID: 10948267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui.
    Briscoe AD; Bernard GD; Szeto AS; Nagy LM; White RH
    J Comp Neurol; 2003 Apr; 458(4):334-49. PubMed ID: 12619069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intron splice sites of Papilio glaucus PglRh3 corroborate insect opsin phylogeny.
    Briscoe AD
    Gene; 1999 Apr; 230(1):101-9. PubMed ID: 10196479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species.
    Briscoe AD; Bernard GD
    J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of rod opsin cDNA from the Old World monkey, Macaca fascicularis.
    Nickells RW; Burgoyne CF; Quigley HA; Zack DJ
    Invest Ophthalmol Vis Sci; 1995 Jan; 36(1):72-82. PubMed ID: 7822161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular diversity of visual pigments in the butterfly Papilio glaucus.
    Briscoe AD
    Naturwissenschaften; 1998 Jan; 85(1):33-5. PubMed ID: 9484709
    [No Abstract]   [Full Text] [Related]  

  • 9. Three opsin-encoding cDNAS from the compound eye of Manduca sexta.
    Chase MR; Bennett RR; White RH
    J Exp Biol; 1997 Sep; 200(Pt 18):2469-78. PubMed ID: 9343857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary structure of locust opsins: a speculative model which may account for ultraviolet wavelength light detection.
    Towner P; Harris P; Wolstenholme AJ; Hill C; Worm K; Gärtner W
    Vision Res; 1997 Mar; 37(5):495-503. PubMed ID: 9156194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing the ancestral butterfly eye: focus on the opsins.
    Briscoe AD
    J Exp Biol; 2008 Jun; 211(Pt 11):1805-13. PubMed ID: 18490396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins.
    Vihtelic TS; Doro CJ; Hyde DR
    Vis Neurosci; 1999; 16(3):571-85. PubMed ID: 10349976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of opsin mRNA in normal and vitamin A deficient retinas of the sphingid moth Manduca sexta.
    Chase MR; Bennett RR; White RH
    Vis Neurosci; 1996; 13(2):353-8. PubMed ID: 8737286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional diversification of lepidopteran opsins following gene duplication.
    Briscoe AD
    Mol Biol Evol; 2001 Dec; 18(12):2270-9. PubMed ID: 11719576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary structure of crayfish visual pigment deduced from cDNA.
    Hariyama T; Ozaki K; Tokunaga F; Tsukahara Y
    FEBS Lett; 1993 Jan; 315(3):287-92. PubMed ID: 8422920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies.
    Briscoe AD; Bybee SM; Bernard GD; Yuan F; Sison-Mangus MP; Reed RD; Warren AD; Llorente-Bousquets J; Chiao CC
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3628-33. PubMed ID: 20133601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes.
    Arikawa K; Iwanaga T; Wakakuwa M; Kinoshita M
    Front Neural Circuits; 2017; 11():96. PubMed ID: 29238294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes.
    Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD
    J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequences and evolution of human and squirrel monkey blue opsin genes.
    Shimmin LC; Mai P; Li WH
    J Mol Evol; 1997 Apr; 44(4):378-82. PubMed ID: 9089077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting modes of evolution of the visual pigments in Heliconius butterflies.
    Yuan F; Bernard GD; Le J; Briscoe AD
    Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.