These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 1254)
81. The charge-relay system of serine proteinases: proton magnetic resonance titration studies of the four histidines of porcine trypsin. Markley JL; Porubcan MA J Mol Biol; 1976 Apr; 102(3):487-509. PubMed ID: 5610 [No Abstract] [Full Text] [Related]
82. Effects of urea-thermal denaturation on the high-performance cation-exchange chromatography of alpha-chymotrypsinogen-A. Parente ES; Wetlaufer DB J Chromatogr; 1984 Nov; 314():337-47. PubMed ID: 6526886 [TBL] [Abstract][Full Text] [Related]
83. Renaturation of recombinant proteins produced as inclusion bodies. Fischer BE Biotechnol Adv; 1994; 12(1):89-101. PubMed ID: 14547821 [TBL] [Abstract][Full Text] [Related]
84. Aggregation of an immunoglobulin fragment by sulfhydryl oxidation. Luks CI; Connell GE Can J Biochem; 1968 Aug; 46(8):961-4. PubMed ID: 4175082 [No Abstract] [Full Text] [Related]
85. Kinetic evidence for intermediate states in the unfolding of chymotrypsinogen A. Tsong TY; Baldwin RL J Mol Biol; 1972 Aug; 69(1):145-8. PubMed ID: 4672198 [No Abstract] [Full Text] [Related]
86. Kinetic study of protein unfolding and refolding using urea gradient electrophoresis. Creighton TE J Mol Biol; 1980 Feb; 137(1):61-80. PubMed ID: 6245222 [No Abstract] [Full Text] [Related]
87. The study of biological macromolecules using perturbed angular correlations of gamma radiation. Meares CF; Westmoreland DG Cold Spring Harb Symp Quant Biol; 1972; 36():511-6. PubMed ID: 4628676 [No Abstract] [Full Text] [Related]
88. The conformational state of methionine residues in the temperature-controlled transition of chymotrypsinogen and -chymotrypsin. Wasi S; Hofmann T Can J Biochem; 1973 Jun; 51(6):797-805. PubMed ID: 4736822 [No Abstract] [Full Text] [Related]
89. Role of the environment in the refolding of reduced pancreatic trypsin inhibitor. Creighton TE J Mol Biol; 1980 Dec; 144(4):521-50. PubMed ID: 6166751 [No Abstract] [Full Text] [Related]
90. Electrophoretic separation of molecular species associated with the thermal transition of chymotrypsinogen A. Hawley SA; Macleod RM J Mol Biol; 1976 May; 103(3):655-7. PubMed ID: 940159 [No Abstract] [Full Text] [Related]
91. Properties of the histidines of chymotrypsinogen: comparison with alpha-chymotrypsin. Cruickshank WH; Kaplan H J Mol Biol; 1974 Feb; 83(2):267-74. PubMed ID: 4821872 [No Abstract] [Full Text] [Related]
96. Ternary complex of DNA with chymotrypsinogen A and acridine orange. Bobb D Arch Biochem Biophys; 1972 Feb; 148(2):359-65. PubMed ID: 5063071 [No Abstract] [Full Text] [Related]
97. DETERMINATION OF CERTAIN AMINO ACIDS IN CHYMOTRYPSINOGEN, AND ITS MOLECULAR WEIGHT. Brand E; Kassell B J Gen Physiol; 1941 Nov; 25(2):167-76. PubMed ID: 19873262 [TBL] [Abstract][Full Text] [Related]
98. The determination of the partial specific volume of proteins by the mechanical oscillator technique. Kratky O; Leopold H; Stabinger H Methods Enzymol; 1973; 27():98-110. PubMed ID: 4797943 [No Abstract] [Full Text] [Related]
99. Chemical derivatives of chymotrypsinogen. II. Reaction with O-methylisourea. CHERVENKA CH; WILCOX PE J Biol Chem; 1956 Oct; 222(2):635-47. PubMed ID: 13367032 [No Abstract] [Full Text] [Related]
100. Chemical derivatives of chymotrypsinogen. I. Reaction with carbon disulfide. CHERVENKA CH; WILCOX PE J Biol Chem; 1956 Oct; 222(2):621-34. PubMed ID: 13367031 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]