These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12540198)

  • 1. Fiber alignment imaging during mechanical testing of soft tissues.
    Tower TT; Neidert MR; Tranquillo RT
    Ann Biomed Eng; 2002; 30(10):1221-33. PubMed ID: 12540198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vector correlation technique for pixel-wise detection of collagen fiber realignment during injurious tensile loading.
    Quinn KP; Winkelstein BA
    J Biomed Opt; 2009; 14(5):054010. PubMed ID: 19895112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alignment maps of tissues: II. Fast harmonic analysis for imaging.
    Tower TT; Tranquillo RT
    Biophys J; 2001 Nov; 81(5):2964-71. PubMed ID: 11606306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar biaxial mechanical behavior of bioartificial tissues possessing prescribed fiber alignment.
    Jhun CS; Evans MC; Barocas VH; Tranquillo RT
    J Biomech Eng; 2009 Aug; 131(8):081006. PubMed ID: 19604018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed polarization imaging of dynamic collagen fiber realignment in tendon-to-bone insertion region.
    Wu X; Pankow M; Huang HS; Peters K
    J Biomed Opt; 2018 Nov; 23(11):1-11. PubMed ID: 30392198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of preconditioning and stress relaxation on local collagen fiber re-alignment: inhomogeneous properties of rat supraspinatus tendon.
    Miller KS; Edelstein L; Connizzo BK; Soslowsky LJ
    J Biomech Eng; 2012 Mar; 134(3):031007. PubMed ID: 22482687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.
    Lake SP; Miller KS; Elliott DM; Soslowsky LJ
    J Orthop Res; 2009 Dec; 27(12):1596-602. PubMed ID: 19544524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full field strain measurements of collagenous tissue by tracking fiber alignment through vector correlation.
    Quinn KP; Winkelstein BA
    J Biomech; 2010 Sep; 43(13):2637-40. PubMed ID: 20494363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-engineered valves with commissural alignment.
    Neidert MR; Tranquillo RT
    Tissue Eng; 2006 Apr; 12(4):891-903. PubMed ID: 16674301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preconditioning is correlated with altered collagen fiber alignment in ligament.
    Quinn KP; Winkelstein BA
    J Biomech Eng; 2011 Jun; 133(6):064506. PubMed ID: 21744935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collagen fiber alignment does not explain mechanical anisotropy in fibroblast populated collagen gels.
    Thomopoulos S; Fomovsky GM; Chandran PL; Holmes JW
    J Biomech Eng; 2007 Oct; 129(5):642-50. PubMed ID: 17887889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction and quantification of collagen fiber alignment in a three-dimensional hydroxyapatite-collagen composite scaffold.
    Banglmaier RF; Sander EA; VandeVord PJ
    Acta Biomater; 2015 Apr; 17():26-35. PubMed ID: 25653215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue.
    York T; Kahan L; Lake SP; Gruev V
    J Biomed Opt; 2014 Jun; 19(6):066011. PubMed ID: 24972359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative mapping of collagen fiber alignment in thick tissue samples using transmission polarized-light microscopy.
    Yakovlev DD; Shvachkina ME; Sherman MM; Spivak AV; Pravdin AB; Yakovlev DA
    J Biomed Opt; 2016 Jul; 21(7):71111. PubMed ID: 27027930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remodeling of engineered tissue anisotropy in response to altered loading conditions.
    Lee EJ; Holmes JW; Costa KD
    Ann Biomed Eng; 2008 Aug; 36(8):1322-34. PubMed ID: 18470621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent.
    Sung HW; Chang Y; Chiu CT; Chen CN; Liang HC
    Biomaterials; 1999 Oct; 20(19):1759-72. PubMed ID: 10509186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static and cyclic mechanical loading of mesenchymal stem cells on elastomeric, electrospun polyurethane meshes.
    Cardwell RD; Kluge JA; Thayer PS; Guelcher SA; Dahlgren LA; Kaplan DL; Goldstein AS
    J Biomech Eng; 2015 Jul; 137(7):0710101-8. PubMed ID: 25902471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approach to the optimization of preparation of bioprosthetic heart valves.
    Mavrilas D; Missirlis Y
    J Biomech; 1991; 24(5):331-9. PubMed ID: 1904875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous fiber realignment during tensile loading of the rat facet capsular ligament identifies mechanically induced damage and physiological dysfunction.
    Quinn KP; Bauman JA; Crosby ND; Winkelstein BA
    J Biomech; 2010 Jul; 43(10):1870-5. PubMed ID: 20381048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic glutaraldehyde fixation of a porcine aortic valve xenograft. I. Effect of fixation conditions on the final tissue viscoelastic properties.
    Duncan AC; Boughner D; Vesely I
    Biomaterials; 1996 Oct; 17(19):1849-56. PubMed ID: 8889064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.