These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 12540199)
1. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Yao H; Justiz MA; Flagler D; Gu WY Ann Biomed Eng; 2002; 30(10):1234-41. PubMed ID: 12540199 [TBL] [Abstract][Full Text] [Related]
2. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. Périé D; Korda D; Iatridis JC J Biomech; 2005 Nov; 38(11):2164-71. PubMed ID: 16154403 [TBL] [Abstract][Full Text] [Related]
3. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering. Cortes DH; Jacobs NT; DeLucca JF; Elliott DM J Biomech; 2014 Jun; 47(9):2088-94. PubMed ID: 24438768 [TBL] [Abstract][Full Text] [Related]
4. Linear and Nonlinear Biphasic Mechanical Properties of Goat IVDs Under Different Swelling Conditions in Confined Compression. Rasoulian A; Vakili-Tahami F; Smit TH Ann Biomed Eng; 2021 Dec; 49(12):3296-3309. PubMed ID: 34480262 [TBL] [Abstract][Full Text] [Related]
5. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Perie DS; Maclean JJ; Owen JP; Iatridis JC Ann Biomed Eng; 2006 May; 34(5):769-77. PubMed ID: 16598654 [TBL] [Abstract][Full Text] [Related]
6. Effects of hydration and fixed charge density on fluid transport in charged hydrated soft tissues. Gu WY; Yao H Ann Biomed Eng; 2003 Nov; 31(10):1162-70. PubMed ID: 14649490 [TBL] [Abstract][Full Text] [Related]
7. The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. Gu WY; Mao XG; Foster RJ; Weidenbaum M; Mow VC; Rawlins BA Spine (Phila Pa 1976); 1999 Dec; 24(23):2449-55. PubMed ID: 10626306 [TBL] [Abstract][Full Text] [Related]
8. The internal mechanics of the intervertebral disc under cyclic loading. Riches PE; Dhillon N; Lotz J; Woods AW; McNally DS J Biomech; 2002 Sep; 35(9):1263-71. PubMed ID: 12163315 [TBL] [Abstract][Full Text] [Related]
9. Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression. Recuerda M; Coté SP; Villemure I; Périé D J Biomech Eng; 2011 Jul; 133(7):071006. PubMed ID: 21823745 [TBL] [Abstract][Full Text] [Related]
10. Confined compression of canine annulus fibrosus under chemical and mechanical loading. Drost MR; Willems P; Snijders H; Huyghe JM; Janssen JD; Huson A J Biomech Eng; 1995 Nov; 117(4):390-6. PubMed ID: 8748519 [TBL] [Abstract][Full Text] [Related]
11. Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression. Cortes DH; Elliott DM Biomech Model Mechanobiol; 2012 Jul; 11(6):781-90. PubMed ID: 21964839 [TBL] [Abstract][Full Text] [Related]
12. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. Iatridis JC; Setton LA; Foster RJ; Rawlins BA; Weidenbaum M; Mow VC J Biomech; 1998 Jun; 31(6):535-44. PubMed ID: 9755038 [TBL] [Abstract][Full Text] [Related]
13. Assessment of mechanical properties of isolated bovine intervertebral discs from multi-parametric magnetic resonance imaging. Recuerda M; Périé D; Gilbert G; Beaudoin G BMC Musculoskelet Disord; 2012 Oct; 13():195. PubMed ID: 23061966 [TBL] [Abstract][Full Text] [Related]
14. An in vitro animal study of the biomechanical responses of anulus fibrosus with aging. Park C; Kim YJ; Lee CS; An K; Shin HJ; Lee CH; Kim CH; Shin JW Spine (Phila Pa 1976); 2005 May; 30(10):E259-65. PubMed ID: 15897815 [TBL] [Abstract][Full Text] [Related]
15. Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition. Best BA; Guilak F; Setton LA; Zhu W; Saed-Nejad F; Ratcliffe A; Weidenbaum M; Mow VC Spine (Phila Pa 1976); 1994 Jan; 19(2):212-21. PubMed ID: 8153833 [TBL] [Abstract][Full Text] [Related]
17. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Johannessen W; Elliott DM Spine (Phila Pa 1976); 2005 Dec; 30(24):E724-9. PubMed ID: 16371889 [TBL] [Abstract][Full Text] [Related]
18. Compressive properties of fibrous repair tissue compared to nucleus and annulus. Freeman AL; Buttermann GR; Beaubien BP; Rochefort WE J Biomech; 2013 Jun; 46(10):1714-21. PubMed ID: 23643028 [TBL] [Abstract][Full Text] [Related]
19. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine. Ryan G; Pandit A; Apatsidis D Clin Biomech (Bristol); 2008 Aug; 23(7):859-69. PubMed ID: 18423954 [TBL] [Abstract][Full Text] [Related]
20. The effect of creep on human lumbar intervertebral disk impact mechanics. Jamison D; Marcolongo MS J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]