BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 12540580)

  • 1. Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection.
    Scidmore MA; Fischer ER; Hackstadt T
    Infect Immun; 2003 Feb; 71(2):973-84. PubMed ID: 12540580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion.
    Hackstadt T; Scidmore-Carlson MA; Shaw EI; Fischer ER
    Cell Microbiol; 1999 Sep; 1(2):119-30. PubMed ID: 11207546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry.
    Scidmore MA; Rockey DD; Fischer ER; Heinzen RA; Hackstadt T
    Infect Immun; 1996 Dec; 64(12):5366-72. PubMed ID: 8945589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins.
    Scidmore-Carlson MA; Shaw EI; Dooley CA; Fischer ER; Hackstadt T
    Mol Microbiol; 1999 Aug; 33(4):753-65. PubMed ID: 10447885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells.
    van Ooij C; Apodaca G; Engel J
    Infect Immun; 1997 Feb; 65(2):758-66. PubMed ID: 9009339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origins and functions of the chlamydial inclusion.
    Hackstadt T; Fischer ER; Scidmore MA; Rockey DD; Heinzen RA
    Trends Microbiol; 1997 Jul; 5(7):288-93. PubMed ID: 9234512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis.
    Heinzen RA; Scidmore MA; Rockey DD; Hackstadt T
    Infect Immun; 1996 Mar; 64(3):796-809. PubMed ID: 8641784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingomyelin trafficking in Chlamydia pneumoniae-infected cells.
    Wolf K; Hackstadt T
    Cell Microbiol; 2001 Mar; 3(3):145-52. PubMed ID: 11260137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion of Chlamydia trachomatis-containing inclusions is inhibited at low temperatures and requires bacterial protein synthesis.
    Van Ooij C; Homola E; Kincaid E; Engel J
    Infect Immun; 1998 Nov; 66(11):5364-71. PubMed ID: 9784545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion.
    Hackstadt T; Scidmore MA; Rockey DD
    Proc Natl Acad Sci U S A; 1995 May; 92(11):4877-81. PubMed ID: 7761416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane.
    Suchland RJ; Rockey DD; Bannantine JP; Stamm WE
    Infect Immun; 2000 Jan; 68(1):360-7. PubMed ID: 10603409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles.
    Moore ER; Fischer ER; Mead DJ; Hackstadt T
    Traffic; 2008 Dec; 9(12):2130-40. PubMed ID: 18778406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The late endocytic Rab39a GTPase regulates the interaction between multivesicular bodies and chlamydial inclusions.
    Gambarte Tudela J; Capmany A; Romao M; Quintero C; Miserey-Lenkei S; Raposo G; Goud B; Damiani MT
    J Cell Sci; 2015 Aug; 128(16):3068-81. PubMed ID: 26163492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane.
    Moore ER; Mead DJ; Dooley CA; Sager J; Hackstadt T
    Microbiology (Reading); 2011 Mar; 157(Pt 3):830-838. PubMed ID: 21109560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner.
    Rzomp KA; Scholtes LD; Briggs BJ; Whittaker GR; Scidmore MA
    Infect Immun; 2003 Oct; 71(10):5855-70. PubMed ID: 14500507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis.
    Robertson DK; Gu L; Rowe RK; Beatty WL
    PLoS Pathog; 2009 Nov; 5(11):e1000664. PubMed ID: 19936056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development.
    Elwell CA; Jiang S; Kim JH; Lee A; Wittmann T; Hanada K; Melancon P; Engel JN
    PLoS Pathog; 2011 Sep; 7(9):e1002198. PubMed ID: 21909260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of intracellular Ca2+ stores in HeLa cells during infection with Chlamydia trachomatis.
    Majeed M; Krause KH; Clark RA; Kihlström E; Stendahl O
    J Cell Sci; 1999 Jan; 112 ( Pt 1)():35-44. PubMed ID: 9841902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.